Effect of bite force in occlusal adjustment of dental implants on the distribution of occlusal pressure: comparison among three bite forces in occlusal adjustment

Author:

Kayumi Sho,Takayama Yoshiyuki,Yokoyama Atsuro,Ueda Nana

Abstract

Abstract Background The purpose of this study was to investigate the influence of occlusal forces (the contractile force of masticatory muscles) exerted during occlusal adjustment on the distribution of the forces among teeth, implants, and temporomandibular joints (TMJs) in intercuspal clenching in cases with bilateral missing molars and premolars by using finite element analysis. Methods A three-dimensional finite element model of the mandible with eight implants in the premolar and molar regions was constructed. Linearly elastic material properties were defined for all elements except the periodontal ligament, which was defined as nonlinearly elastic. The TMJs and antagonists were simplified and replaced with nonlinear springs. Antagonists were assumed to be natural teeth or implants and had two- or three-stage displaceability. We constructed finite element (FE) models in which occlusal adjustment with three kinds of occlusal force (40 N as a light bite, 200 N as a hard bite, and 400 N as a maximum biting force) was performed. The clearance by occlusal adjustment was decided beforehand with a trial-and-error method so that the occlusal forces were distributed similarly to the distribution of the natural dentition. Each model was evaluated under loads of 40, 100, 200, 400, and 800 N to determine the distribution of occlusal forces on the teeth and implants. Results The occlusal forces were concentrated on the most posterior implants while the load was larger, and the percentage of bearing force at the TMJ was small, and vice versa. Conclusions Maximum biting force was better for occlusal adjustment to prevent overloading of the most posterior implant.

Publisher

Springer Science and Business Media LLC

Reference27 articles.

1. Isidor F. Loss of osseointegration caused by occlusal load of oral implants. A clinical and radiographic study in monkeys. Clin Oral Implants Res. 1996;7:143–52.

2. Kim Y, Oh T, Misch CE, Wang H. Occlusal considerations in implant therapy: clinical guidelines with biomechanical rationale. Clin Oral Implants Res. 2005;16:26–35.

3. Misch CE. Occlusal considerations for implant-supported prostheses: implant protective occlusion and occlusal materials. In: Misch CE, Bidez M, editors. Contemporary implant dentistry. 2nd ed. St. Louis: Mosby; 1999. p. 609–28.

4. Miyata T, Kobayashi Y, Araki H, et al. The influence of controlled occlusal overload on peri-implant tissue. Part 3: a histologic study in monkeys. Int J Oral Maxillofac Implants. 2000;5:425–43.

5. Kasai K, Takayama Y, Yokoyama A: Distribution of occlusal forces during occlusal adjustment of dental implant prostheses: a nonlinear finite element analysis considering the capacity for displacement of opposing teeth and implants. J Oral Maxillofac Implants, 2012;27: 329–335

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3