Exploration of proper heating protocol for injectable horizontal platelet-rich fibrin gel

Author:

Zheng Xijiao,Yan Xiang,Cheng Kai,Feng Mengge,Wang Yulan,Xiao Bing

Abstract

Abstract Purpose Platelet-rich fibrin (PRF) has been proposed as promising biomaterials with the advantages of host accumulation of platelets and leukocytes with entrapment of growth factors and fibrin scaffold. However, limitations including fast resorption rate (~ 2 weeks) restricts its clinical application. Recent studies have demonstrated heating treatment can prolong PRF degradation. Current published articles used the method of 75 °C for 10 min to obtain longer degradation, while few studies investigated the most suitable temperature for heating horizontal PRF. Our present study was to discover and confirm the optimum temperature for heat treatment before obtaining H-PRF gels by investigating their structure, mechanical properties, and bioactivity of the H-PRF gels after heating treatment. Methods In the present study, 2-mL upper layer of horizontal PRF was collected and heated at 45 °C, 60 °C, 75 °C, and 90 °C to heat 2-mL upper layer of horizontal PRF for 10 min before mixing with the 2-mL lower layer horizontal PRF. The weight, solidification time and the degradation properties were subsequently recorded. Scanning electron microscopy (SEM) and rheologic tests were carried out to investigate the microstructure and rheologic properties of each H-PRF gel. The biological activity of each H-PRF gel was also evaluated using live/dead staining. Results H-PRF gel prepared at 75 °C for 10 min had the fast solidification period (over a tenfold increase than control) as well as the best resistance to degradation. The number of living cells in H-PRF gel is greater than 90%. SEM showed that H-PRF gel becomes denser as the heating temperature increases, and rheologic tests also revealed that the heat treatment improved the mechanical properties of H-PRF gels when compared to non-heated control group. Future clinical studies are needed to further support the clinical application of H-PRF gels in tissue regeneration procedures. Conclusions Our results demonstrated that the H-PRF gel obtained at 75 °C for 10 min could produce a uniform, moldable gel with a short time for solidification time, great rheologic behavior and, high percent of live cells in PRF gel. A promising use of the commonly utilized PRF gel was achieved facilitating tissue regeneration and preventing degradation.

Funder

Hubei Provincial Health and Family Planning Commission

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3