Abstract
Abstract
Background
Concentrated growth factor (CGF) is a third-generation platelet concentrate product; the major source of growth factors in CGF is its extract; however, there are few studies on the overall effects of the extract of CGF (CGF-e). The aim of this study was to investigate the effect and mechanism of CGF-e on MC3T3-E1 cells in vitro and to explore the effect of combination of CGF-e and bone collagen (Bio-Oss Collagen, Geistlich, Switzerland) for bone formation in cranial defect model of rats in vivo.
Methods
The cell proliferation, ALP activity, mineral deposition, osteogenic-related gene, and protein expression were evaluated in vitro; the newly formed bone was evaluated by histological and immunohistochemical analysis through critical-sized cranial defect rat model in vivo.
Results
The cell proliferation, ALP activity, mineral deposition, osteogenic-related gene, and protein expression of CGF-e group were significantly increased compared with the control group. In addition, there was significantly more newly formed bone in the CGF-e + bone collagen group, compared to the blank control group and bone collagen only group.
Conclusions
CGF-e activated the PI3K/AKT signaling pathway to enhance osteogenic differentiation and mineralization of MC3T3-E1 cells and promoted the bone formation of rat cranial defect model.
Funder
The Science and Technology Plan Project of Yantai
The Medicine and Health Development Plan Project of Shandong
Publisher
Springer Science and Business Media LLC
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献