Abstract
Abstract
Purpose
To investigate the bone augmentation ability of demineralized bone sheets mixed with allogeneic bone with protein fractions containing bioactive substances and the interaction between coexisting bioactive substances and proteins.
Methods
Four types of demineralized bone sheets mixed with allogeneic bone in the presence or absence of bone proteins were created. Transplantation experiments using each demineralized bone sheet were performed in rats, and their ability to induce bone augmentation was analysed by microcomputed tomography images. Bioactive substances in bone proteins were isolated by heparin affinity chromatography and detected by the measurement of alkaline phosphatase activity in human periodontal ligament cells and dual luciferase assays. Noncollagenous proteins (NCPs) coexisting with the bioactive substances were identified by mass spectrometry, and their interaction with bioactive substances was investigated by in vitro binding experiments.
Results
Demineralized bone sheets containing bone proteins possessed the ability to induce bone augmentation. Bone proteins were isolated into five fractions by heparin affinity chromatography, and transforming growth factor-beta (TGF-β) was detected in the third fraction (Hep-c). Dentin matrix protein 1 (DMP1), matrix extracellular phosphoglycoprotein (MEPE), and biglycan (BGN) also coexisted in Hep-c, and the binding of these proteins to TGF-β increased TGF-β activity by approximately 14.7% to 32.7%.
Conclusions
Demineralized bone sheets are capable of inducing bone augmentation, and this ability is mainly due to TGF-β in the bone protein mixed with the sheets. The activity of TGF-β is maintained when binding to bone NCPs such as DMP1, MEPE, and BGN in the sheets.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献