Internet of Things enabled real time cold chain monitoring in a container port

Author:

Cil Ahmet Yunus,Abdurahman Dini,Cil IbrahimORCID

Abstract

Abstract Purpose Seaports are regarded as significant actors in global logistics and supply chains since a large part of the cargoes carried over the globe are being processed there. When the cold chain broken down during transport and storage in the ports, the humidity, nutrition, temperature and time conditions to be required for the growth of the bacteria occur, and rapid reproduction occurs and the properties of the products are rapidly deteriorating. It is imperative that especially medicines, some chemical substances and foodstuffs need to be transported without breaking the cold chain in the logistics. The monitoring and control of the temperature and humidity level is important in the time period between the loading of these containers in special areas in ports, the loading of freight in open areas, or the loading of freight on roads and railway carriages. For this reason, precise monitoring and control of the system is vital in the port logistics management. Method In this study, an IoT-enabled system is designed for Container Ports by developing software, interface and equipment that will enable remote monitoring of temperature, humidity and other necessary key status parameters. Findings The developed IoT-based system provides audible and visual warning, e-mail and SMS communication, similar to a monitoring screen such as a heart graph monitor, when the instant values of the refrigerated container are transmitted to the database, when the defined upper and lower values are approached. All these data and major change information are archived in the database and retrospective situation analysis and data analysis can be performed. Conclusion Using technologies such as Wireless Sensor Network (WSN) and RFID, an IoT-enabled Cold Chain Logistics system has been proposed that provides real-time monitoring of products in containers at ports, providing DS services to logistics providers and customers. In this context, it was explained how the ambient parameter values were collected in real time using WSN and IEEE 802.15.4, how the collected data was sent to the server via the GSM gateway. In the port scenario, activation devices such as IEEE 802.15.4 and RFID were modeled using the OPNET simulator. The developed model was carried out in accordance with the principles of EPCglobal Gen 2. With the proposed approach, smart solutions provide a smarter flow of information. The results show that IoT- enabled cold chain systems have a great potential for managing, monitoring, receiving and determining abnormal events related to temperature-sensitive products in real time.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference44 articles.

1. Abdurrahman D (2016) Modeling and simulation of an IoT enabled cold chain logistics Management System, Master's Thesis, Sakarya University

2. Agatić A, Kolanović I (2020) Improving the seaport service quality by implementing digital technologies. Pomorstvo 34(1):93–101

3. Al-Fuqaha A, Guizani M, Mohammadi M, Aledhari M, Ayyash M (2015) Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun Surv Tutor 17(4):2347–2376

4. Anwar M, Henesey L, Casalicchio E (2019), Digitalization in container terminal logistics: a literature review. In: 27th annual conference of international association of maritime economists, Athens, pp 1–25.

5. BCG. https://www.bcg.com/publications/2018/tackling-1.6-billion-ton-food-loss-and-waste-crisis. Accessed 1 Mar 2022

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3