Author:
Kim Min-Wu,Song Yong-Ha,Ko Seung-Deok,Ahn Sang-Joon,Yoon Jun-Bo
Abstract
Abstract
An ultra-low voltage microelectromechanical system (MEMS) switch for low-power integrated circuit (IC) applications is proposed, fabricated and demonstrated. The folded hinge structure allows a large beam structure to be suspended with a designed air gap, effectively suppressing unwanted deflection. The actuation voltage of the switch was measured to be 1.7 V, the lowest among electrostatic switches. There was no variation in the actuation voltage until 106 cyclic actuations, showing the stability of a low actuation voltage in electrostatic actuation for the first time. The contact resistance was around 12 Ω, caused by a low contact force below 1 μN despite an Au–Au contact.
Publisher
Springer Science and Business Media LLC
Subject
Biomedical Engineering,Biomaterials
Reference14 articles.
1. Chen F, Spencer M, Nathanael R, Wang C, Fariborzi H, Gupta A, Kam H, Pott V, Jeon J, Liu TJK, Markovic D, Stojanovic V, Alon E: Demonstration of integrated micro-electro-mechanical (MEM) switch circuits for VLSI applications. IEEE ISSCC 2010, ᅟ: 150–151.
2. Lee JO, Song YH, Kim MW, Kang MH, Oh JS, Yang HH, Yoon JB: A sub-1-volt nanoelectromechanical switching device. Nat Nanotech 2013, 8: 36–40. 10.1038/nnano.2012.208
3. Proie RM Jr, Polcawich RG, Pulskamp JS, Ivanov T, Zaghloul M: Development of a PZT MEMS switch architecture for low-power digital applications. J Microelectromech Syst 2011, 20: 1032–42. 10.1109/JMEMS.2011.2148160
4. Lee HC, Park JY, Bu JU: Piezoelectrically actuated RF MEMS DC contact switches with low voltage operation. IEEE Microw Compon Lett 2005, 15: 202–4. 10.1109/LMWC.2005.845689
5. Kim MW, Song YH, Yang HH, Yoon JB: An ultra-low voltage MEMS switch using stiction-recovery actuation. J Micromech Microeng 2013, 23: ᅟ. doi:10.1088/0960–1317/23/4/045022
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献