Abstract
AbstractMicroelectrodes for detection of chemicals present several advantages over conventional sized electrodes. However, rapid and low-cost fabrication of microelectrodes is challenging due to high complexity of patterning equipment. We present the development of a low-cost, customizable inkjet printer for printing nanomaterials including carbon nanotubes for the fabrication of microelectrodes. The achieved spatial resolution of the inkjet printer is less than 20 µm, which is comparable to advanced commercially available inkjet printers, with the advantage of being low-cost and easily replicated.
Publisher
Springer Science and Business Media LLC
Subject
Biomedical Engineering,Biomaterials
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献