Overcoming delamination in two-photon lithography for improving fabrication of 3D microstructures

Author:

Ha Cheol WooORCID

Abstract

AbstractTwo-photon lithography has emerged as a highly effective method for fabricating intricate three-dimensional (3D) microstructures. It enables the rapid fabrication of 3D microstructures, unlike conventional two-dimensional nanopatterning. Researchers have extensively investigated two-photon polymerization (TPP) for the fabrication of diverse 3D micro/nanodevices with high resolution. TPP can be applied in cell cultures, metamaterials, optical materials, electrical devices, and fluidic devices, to name a few. In this study, we investigate the applications and innovative research pertaining to TPP, which is an effective fabrication technique with significant advancement in various fields. In particular, we attempt to determine the reasons that cause the detachment or delamination of 3D microstructures during the development process and propose some solutions. A step-by-step fabrication process for a glass substrate, from photoresist deposition to laser scanning and the dissolution of the uncured photoresist, is presented. Defects such as pattern delamination are discussed, with emphasis on the cell scaffold structure and microlens array. Understanding and addressing these defects are vital to the success of 3D microstructure fabrication via TPP.

Funder

National Research Foundation

KAIST Institute for IT Convergence

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering,Biomaterials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 3D Printing Photonic Crystals: A Review;Small;2024-08

2. Two-photon polymerization lithography for imaging optics;International Journal of Extreme Manufacturing;2024-04-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3