Electrochemical activity of glassy carbon electrode modified with ZnO nanoparticles prepared Via Senna Alata L. leaf extract towards antiretroviral drug

Author:

Ariyanta Harits AtikaORCID,Roji Fakhrur,Apriandanu Dewangga Oky Bagus

Abstract

AbstractThe phytosynthesis method was used to prepare ZnO nanoparticles (ZnO NPs) via Senna alata L. leaf extract (SALE) by involving alkaloids, which play an essential role as a source of weak bases during the formation reaction of NPs. ZnO NPs on glassy carbon electrodes (GCE/ZnO NP) have been introduced to investigate its electrochemical activity towards the antiretroviral drug, lamivudine (3TC). Several characterization techniques, such as Fourier Transform Infra-Red (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), and Dynamic Light Scattering (DLS) techniques were employed to analyze the properties of GCE/ZnO NPs. As a result, ZnO NPs in spherical shape showed a high purity crystalline hexagonal wurtzite structure with a particle diameter of 40–60 nm. A Cyclic Voltammetry (CV) measurement confirmed that the electrochemical reduction of 3TC on GCE/ZnO NPs exhibited an excellent linear range of 10–300 µM with a detection limit of 1.902 µM, quantitation limit of 6.330 µM, and sensitivity of 0.0278 µA/µM. Thus, this research suggests a facile method for the preparation of material-based ZnO NPs as a promising antiretroviral drug sensors due to their excellent electrochemical properties.

Funder

Universitas Gunadarma

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3