Cisplatin-induced neurotoxicity in cerebellar cortex of male mice involves oxidative stress and histopathology

Author:

Attia Azza,Matta Cecil,ElMazoudy RedaORCID,Khalifa Hanan

Abstract

Abstract Background Despite evidence of neurotoxicity, cisplatin is still considered the most potent drug prescribed in human chemotherapy for a broad spectrum of malignancies. The objective was to evaluate the cerebellar cortex damage including oxidative stress biomarkers and histopathology aspects in male mice. One saline control group and two cisplatin groups were intraperitoneally injected with 0, 5, and 10 mg/kg body weight (bw) cisplatin, twice per week for four successive weeks, respectively. Results Cisplatin decreased the body weights of treated mice. Serum levels of superoxide dismutase and glutathione peroxidase were significantly reduced in the 5 and 10 mg/kg dose, twice weekly for 4 weeks treatment; in contrast, there was a significant increase of lipid peroxidation. 5 and 10 mg/kg bw of cisplatin caused histopathological damage in the cerebellum tissue characterized by disruption, disorganization, and degeneration with dense pyknotic nuclei of the granular cells. Ultrastructurally, in the cortical region of the cerebellum, the Purkinje cells showed irregular pyknotic nuclei with indistinct nucleoli, cytoplasmic vacuolation, marked indentation of the nuclear membrane, dilatation of the endoplasmic reticulum, and breakdown and disappearance of mitochondrial cristae. Moreover, the molecular layer showed cellular necrosis and an increased number of lysosomal particles. The myelinated nerve fibers showed degenerative areas distinct by splitting, disruption, and loss of the lamellar pattern of the myelin sheath. Conclusion These findings provide a confirmed foresight that the in vivo potential treatment of mice with cisplatin induces cerebellum deficits and impairment in neuronal histology. The identified mechanism which evokes neurotoxicity is oxidative stress-dependent status. This mechanism is pharmacologically boosted by great production of free radical reactive oxygen species.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3