Survival analysis of African catfish and Nile tilapia briefly exposed to complex pesticide mixtures

Author:

Kanu Kingsley C.ORCID,Otitoloju Adebayo A.,Amaeze Nnamdi H.

Abstract

Abstract Background Pulse exposures are the consequences of the intermittent release of pollutants in the environment. Brief exposure of aquatic organisms to high concentrations of pesticides simultaneously occurs, particularly in small watercourses during high flows. The effects of pulse exposure often include effects occurring during and after the exposure. Despite this, routine toxicity tests procedures often ignore brief exposure scenarios and the role of time in toxicity. We conducted a pulse toxicity test by briefly exposing African catfish and Nile tilapia fingerlings to pesticide mixtures of atrazine, mancozeb, chlorpyrifos, and lambda-cyhalothrin. The study aimed to estimate pesticide mixture interaction in pulse-exposed fish and elucidate the influence of species differences on the response of fish to the pesticide mixture. Results Despite the similarity in fingerlings weight, African catfish had a significantly higher survival probability than Nile tilapia after exposure to atrazine-mancozeb mixture. However, the survival probability of African catfish and Nile tilapia fingerlings were similar after exposure to atrazine-chlorpyrifos, atrazine-lambda cyhalothrin, mancozeb-chlorpyrifos, mancozeb-lambda cyhalothrin, chlorpyrifos-lambda cyhalothrin, and quaternary mixture (p > 0.05). The survival probability of exposed fingerlings was significantly lower for continuous than pulse exposure to the mixtures (p < 0.01). Nevertheless, the survival probability of 60 min of pulse exposure to 13.49 mg/L mancozeb-lambda cyhalothrin was similar to continuous exposure for 96 h. Atrazine-mancozeb, atrazine-chlorpyrifos, atrazine-lambda cyhalothrin, mancozeb-chlorpyrifos, mancozeb-lambda cyhalothrin, and the quaternary pesticide mixture were antagonists in African catfish but not in Nile tilapia. At the same time, chlorpyrifos-lambda-cyhalothrin was antagonistic in Nile tilapia but not African catfish. Conclusions Pesticide mixture interaction was antagonist but specie-dependent. Innate intrinsic and extrinsic deterministic factors and, to a limited extent, stochastic processes may have influenced the survival probability of African catfish, and Nile tilapia pulsed exposed to complex pesticide mixtures. Pulse toxicity assessment using survival analysis is relevant in ecotoxicology as it enables the study of factors that can influence pulse toxicity.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3