Toxicity evaluation and chemical composition of Capsicum frutescens for natural control of Asian blue tick, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae)
-
Published:2021-10-30
Issue:1
Volume:82
Page:
-
ISSN:2090-990X
-
Container-title:The Journal of Basic and Applied Zoology
-
language:en
-
Short-container-title:JoBAZ
Author:
Kishore Vijay,Loach Neha,Srivastava C. N.,Mohan Lalit
Abstract
Abstract
Background
Indiscriminate use of synthetic acaricides in the management of veterinary parasites has led to environmental pollution, acaricidal resistance and their residues in the animal products. These problems are directly demanded an alternative acaricidal source for the ticks control and that should be cost-effective, eco-friendly and target specific. The current study demonstrated the acaricidal effects of Capsicum frutescens (fruits) against the cattle tick Rhipicephalus (Boophilus) microplus. In adult immersion test, the effects of the treatment on engorged females were assessed by measuring egg mass production, estimated reproductive factor, and % inhibition of reproduction.
Results
Methanol extract was observed the most effective against adults with LC50 617.54 ppm and LC90 1040.41 ppm. The other target extracts (petroleum ether and hexane) were less effective to the engorged females of R. microplus. Chemical analysis of the potent extract was elucidated by Gas Chromatography–Mass Spectrometry analysis and Cis-13-octadecenoic acid was observed as main compound (43.54%). The simultaneous evaluation of the qualitative chemical screening of the methanol extract showed the presence of tannins, saponins, carbohydrates, steroids, terpenoids, flavonoids, and alkaloids.
Conclusion
The study concludes that the methanol extract of C. frutescens fruits revealed the significant acaricidal properties and may be used as safe alternative for tick management.
Publisher
Springer Science and Business Media LLC
Reference59 articles.
1. Abbas, R. Z., Zaman, M. A., Colwell, D. D., Gilleard, J., & Iqbal, Z. (2014). Acaricide resistance in cattle ticks and approaches to its management: The state of play. Veterniary Parasitology, 203, 6–20. 2. Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18, 265–267. 3. Adeyemi, M. A., Ekunseitan, D. A., Abiola, S. S., Dipeolu, M. A., Egbeyale, L. T., & Sogunle, O. M. (2017). Phytochemical analysis and GC-MS determination of Lagenaria breviflora R. Fruit. International Journal of Pharmacognosy and Phytochemical Research, 9, 1045–1050. 4. Aharoni, A., Giri, A. P., Deuerlein, S., Griepink, F., de Kogel, W. J., Verstappen, F. W., Verhoeven, H. A., Jongsma, M. A., Schwab, W., & Bouwmeester, H. J. (2003). Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. The Plant Cell, 15, 2866–2884. 5. Amer, A., & Mehlhorn, H. (2006). Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitology Research, 99, 466–472.
|
|