Evaluation of random forests performance for genome-wide association studies in the presence of interaction effects

Author:

Kim Yoonhee,Wojciechowski Robert,Sung Heejong,Mathias Rasika A,Wang Li,Klein Alison P,Lenroot Rhoshel K,Malley James,Bailey-Wilson Joan E

Abstract

Abstract Random forests (RF) is one of a broad class of machine learning methods that are able to deal with large-scale data without model specification, which makes it an attractive method for genome-wide association studies (GWAS). The performance of RF and other association methods in the presence of interactions was evaluated using the simulated data from Genetic Analysis Workshop 16 Problem 3, with knowledge of the major causative markers, risk factors, and their interactions in the simulated traits. There was good power to detect the environmental risk factors using RF, trend tests, or regression analyses but the power to detect the effects of the causal markers was poor for all methods. The causal marker that had an interactive effect with smoking did show moderate evidence of association in the RF and regression analyses, suggesting that RF may perform well at detecting such interactions in larger, more highly powered datasets.

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3