Author:
Sanz-Santos Gema,Jiménez-Marín Ángeles,Bautista Rocío,Fernández Noé,Claros Gonzalo M,Garrido Juan J
Abstract
Abstract
Background
Experimental exposure of swine neutrophils to bacterial lipopolysaccharide (LPS) represents a model to study the innate immune response during bacterial infection. Neutrophils can effectively limit the infection by secreting lipid mediators, antimicrobial molecules and a combination of reactive oxygen species (ROS) without new synthesis of proteins. However, it is known that neutrophils can modify the gene expression after LPS exposure. We performed microarray gene expression analysis in order to elucidate the less known transcriptional response of neutrophils during infection.
Methods
Blood samples were collected from four healthy Iberian pigs and neutrophils were isolated and incubated during 6, 9 and 18 hrs in presence or absence of lipopolysaccharide (LPS) from Salmonella enterica serovar Typhimurium. RNA was isolated and hybridized to Affymetrix Porcine GeneChip®. Microarray data were normalized using Robust Microarray Analysis (RMA) and then, differential expression was obtained by an analysis of variance (ANOVA).
Results
ANOVA data analysis showed that the number of differentially expressed genes (DEG) after LPS treatment vary with time. The highest transcriptional response occurred at 9 hr post LPS stimulation with 1494 DEG whereas at 6 and 18 hr showed 125 and 108 DEG, respectively. Three different gene expression tendencies were observed: genes in cluster 1 showed a tendency toward up-regulation; cluster 2 genes showing a tendency for down-regulation at 9 hr; and cluster 3 genes were up-regulated at 9 hr post LPS stimulation. Ingenuity Pathway Analysis revealed a delay of neutrophil apoptosis at 9 hr. Many genes controlling biological functions were altered with time including those controlling metabolism and cell organization, ubiquitination, adhesion, movement or inflammatory response.
Conclusions
LPS stimulation alters the transcriptional pattern in neutrophils and the present results show that the robust transcriptional potential of neutrophils under infection conditions, indicating that active regulation of gene expression plays a major role in the neutrophil-mediated- innate immune response.
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Reference15 articles.
1. Homburg CH, Ross D: Apoptosis of neutrophils. Curr Opin Hematol. 1996, 3: 94-99. 10.1097/00062752-199603010-00014.
2. Kasprisin DO, Harris MB: The role of RNA metabolism in polymorphonuclear leukocyte phagocytosis. J Lab Clin Med. 1977, 90: 118-124.
3. Cohn ZA, Morse SI: Functional and metabolic properties of polymorphonuclear leucocytes II. The influence of a lipopolysaccharide endotoxin. J Exp Med. 1960, 111: 689-704. 10.1084/jem.111.5.689.
4. Dahinden CA, Galanos C, Fehr J: Granulocyte activation by endotoxin I. Correlation between adherence and other granulocyte functions, and role of endotoxin structure on biologic activity. J immunol. 1983, 130: 857-862.
5. Heit B, Liu L, Colarusso P, Puri KD, Kubes P: PI3K accelerates, but is not required for, neutrophil chemotaxis to fMLP. J Cell Sci. 2008, 121 (Pt 2): 205-14. 10.1242/jcs.020412.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献