Towards structured output prediction of enzyme function

Author:

Astikainen Katja,Holm Liisa,Pitkänen Esa,Szedmak Sandor,Rousu Juho

Abstract

Abstract Background In this paper we describe work in progress in developing kernel methods for enzyme function prediction. Our focus is in developing so called structured output prediction methods, where the enzymatic reaction is the combinatorial target object for prediction. We compared two structured output prediction methods, the Hierarchical Max-Margin Markov algorithm (HM3) and the Maximum Margin Regression algorithm (MMR) in hierarchical classification of enzyme function. As sequence features we use various string kernels and the GTG feature set derived from the global alignment trace graph of protein sequences. Results In our experiments, in predicting enzyme EC classification we obtain over 85% accuracy (predicting the four digit EC code) and over 91% microlabel F1 score (predicting individual EC digits). In predicting the Gold Standard enzyme families, we obtain over 79% accuracy (predicting family correctly) and over 89% microlabel F1 score (predicting superfamilies and families). In the latter case, structured output methods are significantly more accurate than nearest neighbor classifier. A polynomial kernel over the GTG feature set turned out to be a prerequisite for accurate function prediction. Combining GTG with string kernels boosted accuracy slightly in the case of EC class prediction. Conclusion Structured output prediction with GTG features is shown to be computationally feasible and to have accuracy on par with state-of-the-art approaches in enzyme function prediction.

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction of Human Phenotype Ontology terms by means of hierarchical ensemble methods;BMC Bioinformatics;2017-10-12

2. GOstruct 2.0;Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics;2017-08-20

3. Machine Learning Approach to Predict Enzyme Subclasses;Multi-Scale Approaches in Drug Discovery;2017

4. Can computer vision problems benefit from structured hierarchical classification?;Machine Vision and Applications;2016-05-06

5. Scalable, accurate image annotation with joint SVMs and output kernels;Neurocomputing;2015-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3