Ultrasound characteristics of follicular and parafollicular thyroid neoplasms: diagnostic performance of artificial neural network

Author:

Cordes Michael,Götz Theresa Ida,Coerper Stephan,Kuwert Torsten,Schmidkonz Christian

Abstract

Abstract Background Ultrasound is the first-line imaging modality for detection and classification of thyroid nodules. Certain features observable by ultrasound have recently been equated with potential malignancy. This retrospective cohort study was conducted to test the hypothesis that radiomics of the four categorical divisions (medullary [MTC], papillary [PTC], or follicular [FTC] carcinoma and follicular thyroid adenoma [FTA]) demonstrate distinctive sonographic characteristics. Using an artificial neural network model for proof of concept, these sonographic features served as input. Methods A total of 148 patients were enrolled for study, all with confirmed thyroid pathology in one of the four named categories. Preoperative ultrasound profiles were obtained via standardized protocols. The neural network consisted of seven input neurons; three hidden layers with 50, 250, and 100 neurons, respectively; and one output layer. Results Radiomics of contour, structure, and calcifications differed significantly according to nodule type (p = 0.025, p = 0.032, and p = 0.0002, respectively). Levels of accuracy shown by artificial neural network analysis in discriminating among categories ranged from 0.59 to 0.98 (95% confidence interval [CI]: 0.57–0.99), with positive and negative predictive ranges of 0.41–0.99 and 0.78–0.97, respectively. Conclusions Our data indicate that some MTCs, PTCs, FTCs, and FTAs have distinctive sonographic characteristics. However, a significant overlap of these characteristics may impede an explicit classification. Further prospective investigations involving larger patient and nodule numbers and multicenter access should be pursued to determine if neural networks of this sort are beneficial, helping to classify neoplasms of the thyroid gland.

Publisher

Springer Science and Business Media LLC

Subject

Endocrine and Autonomic Systems,Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3