Dog olfactory receptor gene expression profiling using samples derived from nasal epithelium brushing

Author:

Azzouzi Naoual,Guillory Anne-Sophie,Chaudieu Gilles,Galibert FrancisORCID

Abstract

AbstractDogs have an exquisite sense of olfaction. In many instances this ability has been utilized by humans for a wide range of important situations including detecting explosives and illegal drugs. It is accepted that some breeds have better senses of smell than others. Dogs can detect many volatile compounds at extremely low concentrations in air. To achieve such high levels of detection, the canine olfactory system is both complex and highly developed requiring a high density of olfactory receptors capable of detecting volatiles. Consequently the dog genome encodes a large number of olfactory receptor (OR) genes. However, it remains unclear as to what extent are all of these OR genes expressed on the cell surface. To facilitate such studies, a nasal brushing method was developed to recover dog nasal epithelial cell samples from which total RNA could be extracted and used to prepare high quality cDNA libraries. After capture by hybridization with an extensive set of oligonucleotides, the level of expression of each transcript was measured following next generation sequencing (NGS). The reproducibility of this sampling approach was checked by analyzing replicate samples from the same animal (up to 6 per each naris). The quality of the hybridization capture was also checked by analyzing two DNA libraries; this offered an advantage over RNA libraries by having an equal presence for each gene. Finally, we compared this brushing method performed on living dogs to a nasal epithelium biopsy approach applied to two euthanized terminally ill dogs, following consent from their owners.Comparison the expression levels of each transcript indicate that the ratios of expression between the highest and the least expressed OR in each sample are greater than 10,000 (paralog variation). Furthermore, it was clear that a number of OR genes are not expressed.The method developed and described here will allow researchers to further address whether variations observed in the OR transcriptome relate to dog ‘life experiences’ and whether any differences observed between samples are dog-specific or breed-specific.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Cranial Nerves;NeuroSci;2023-12-28

2. Peripheral Olfactory Pathway Anatomy, Physiology, and Genetics;Olfactory Research in Dogs;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3