Experimental analysis of bladder cancer-associated mutations in EP300 identifies EP300-R1627W as a driver mutation

Author:

Luo Mayao,Zhang Yifan,Xu Zhuofan,Lv Shidong,Wei Qiang,Dang QiangORCID

Abstract

Abstract Background Bladder cancer (BCa) is the most common malignant tumor of the urinary system, with transitional cell carcinoma (TCC) being the predominant type. EP300 encodes a lysine acetyltransferase that regulates a large subset of genes by acetylating histones and non-histone proteins. We previously identified several bladder cancer-associated mutations in EP300 using high-throughput sequencing; however, the functional consequences of these mutations remain unclear. Methods Bladder cancer cells T24 and TCC-SUP were infected with shEP300 lentiviruses to generate stable EP300 knockdown cell lines. The expression levels of EP300, p16 and p21 were detected by real-time PCR and western blots. The transcriptional activity of p16 and p21 were detected by dual luciferase assay. Cell proliferation assay, flow cytometric analyses of cell cycle, invasion assay and xenograft tumor model were used to measure the effect of EP300-R1627W mutation in bladder cancer. Immunoprecipitation was used to explore the relationship between EP300-R1627W mutation and p53. Structural analysis was used to detect the structure of EP300-R1627W protein compared to EP300-wt protein. Results we screened the mutations of EP300 and found that the EP300-R1627W mutation significantly impairs EP300 transactivation activity. Notably, we demonstrated that the R1627W mutation impairs EP300 acetyltransferase activity, potentially by interfering with substrate binding. Finally, we show that EP300-R1627W is more aggressive in growth and invasion in vitro and in vivo compared to cells expressing EP300-wt. We also found that the EP300-R1627W mutation occurs frequently in seven different types of cancers. Conclusion In summary, our work defines a driver role of EP300-R1627W in bladder cancer development and progression.

Funder

National Natural Science Foundation of China

Outstanding Youths Development Scheme of Nanfang Hospital, Southern Medical University

Presidential Foundation of Nanfang Hospital, Southern Medical University

Natural Science Foundation of Guangdong Province

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Epigenetic Enzymes and Their Mutations in Cancer;Epigenetics and Human Health;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3