The interaction between autophagy and the epithelial-mesenchymal transition mediated by NICD/ULK1 is involved in the formation of diabetic cataracts

Author:

Ma Jiyuan,Ye Wei,Yang Yunshu,Wu Tong,Wang Yafen,Li Ji,Pei Rui,He Mengmei,Zhang Luning,Zhou JianORCID

Abstract

Abstract Background Cataracts are the leading cause of blindness and a common ocular complication of diabetes. The epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) and altered autophagic activity occur during the development of diabetic cataracts. The disturbed interaction of autophagy with EMT in LECs stimulated by high glucose levels may participate in cataract formation. Methods A rat diabetic cataract model induced by streptozotocin (STZ) and human lens epithelial cells (HLE-B3) stimulated with a high glucose concentration were employed in the study. These models were treated with rapamycin (an inhibitor of mammalian target of rapamycin (mTOR)), and N-(N-[3,5-difluorophenacetyl]-1-alanyl)-S-phenylglycine t-butyl ester (DAPT, an inhibitor of γ-secretase) alone or in combination. Lens opacity was observed and photographed under a slit-lamp microscope. Histological changes in paraffin sections of lenses were detected under a light microscope after hematoxylin and eosin staining. Alterations of autophagosomes in LECs were counted and evaluated under a transmission electron microscope. The expression levels of proteins involved in the EMT, autophagy, and the signaling pathways in LECs were measured using Western blotting and immunofluorescence staining. Cell migration was determined by performing transwell and scratch wound assays. Coimmunoprecipitation (Co-IP) was performed to verify protein-protein interactions. Proteins were overexpressed in transfected cells to confirm their roles in the signaling pathways of interest. Results In LECs, a high glucose concentration induces the EMT by activating Jagged1/Notch1/Notch intracellular domain (NICD)/Snail signaling and inhibits autophagy through the AKT/mTOR/unc 51-like kinase 1 (ULK1) signaling pathway in vivo and in vitro, resulting in diabetic cataracts. Enhanced autophagic activity induced by rapamycin suppressed the EMT by inducing Notch1 degradation by SQSTM1/p62 and microtubule-associated protein light chain 3 (LC3) in LECs, while inhibition of the Notch signaling pathway with DAPT not only prevented the EMT but also activated autophagy by decreasing the levels of NICD, which bound to ULK1, phosphorylated it, and then inhibited the initiation of autophagy. Conclusions We describe a new interaction of autophagy and the EMT involving NICD/ULK1 signaling, which mediates crosstalk between these two important events in the formation of diabetic cataracts. Activating autophagy and suppressing the EMT mutually promote each other, revealing a potential target and strategy for the prevention of diabetic cataracts.

Funder

National Natural Science Foundation of China

Disciplines Promotion Project of Xijing Hospital

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3