Role of the GalNAc-galectin pathway in the healing of premature rupture of membranes

Author:

Chen Jia-Le,Liu Lou,Peng Xin-Rui,Wang Yan,Xiang Xiang,Chen Yu,Xu De-Xiang,Chen Dao-ZhenORCID

Abstract

Abstract Background Premature rupture of the membranes (PROM) is a key cause of preterm birth and represents a major cause of neonatal mortality and morbidity. Natural products N-acetyl-d-galactosamine (GalNAc), which are basic building blocks of important polysaccharides in biological cells or tissues, such as chitin, glycoproteins, and glycolipids, may improve possible effects of wound healing. Methods An in vitro inflammation and oxidative stress model was constructed using tumor necrosis-α (TNF-α) and lipopolysaccharide (LPS) action on WISH cells. Human amniotic epithelial cells (hAECs) were primarily cultured by digestion to construct a wound model. The effects of GalNAc on anti-inflammatory and anti-oxidative stress, migration and proliferation, epithelial-mesenchymal transition (EMT), glycosaminoglycan (GAG)/hyaluronic acid (HA) production, and protein kinase B (Akt) pathway in hAECs and WISH cells were analyzed using the DCFH-DA fluorescent probe, ELISA, CCK-8, scratch, transwell migration, and western blot to determine the mechanism by which GalNAc promotes amniotic wound healing. Results GalNAc decreased IL-6 expression in TNF-α-stimulated WISH cells and ROS expression in LPS-stimulated WISH cells (P < 0.05). GalNAc promoted the expression of Gal-1 and Gal-3 with anti-inflammatory and anti-oxidative stress effects. GalNAc promoted the migration of hAECs (50% vs. 80%) and WISH cells through the Akt signaling pathway, EMT reached the point of promoting fetal membrane healing, and GalNAc did not affect the activity of hAECs and WISH cells (P > 0.05). GalNAc upregulated the expression of sGAG in WISH cells (P < 0.05) but did not affect HA levels (P > 0.05). Conclusions GalNAc might be a potential target for the prevention and treatment of PROM through the galectin pathway, including (i) inflammation; (ii) epithelial-mesenchymal transition; (iii) proliferation and migration; and (iv) regression, remodeling, and healing.

Funder

Postgraduate Innovation Research and Practice Program of Anhui Medical University

Qinghai Province Key Research and Development and Transformation Plan-Specific fund of Science and Technology Assistance to Qinghai

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3