WSB1, as an E3 ligase, restrains myocardial ischemia–reperfusion injury by activating β-catenin signaling via promoting GSK3β ubiquitination

Author:

Fang Lini,Tao Yang,Che Guoying,Yun Yongzi,Ren Min,Liu YujieORCID

Abstract

Abstract Background Reperfusion is the most effective strategy for myocardial infarct, but induces additional injury. WD repeat and SOCS box containing protein 1 (WSB1) plays a protective role in ischemic cells. This study aims to investigate the effects of WSB1 on myocardial ischemia–reperfusion (IR) injury. Methods The myocardial IR was induced by left anterior descending (LAD) ligation for 45 min and subsequent reperfusion. The overexpression of WSB1 was mediated by tail vein injection of AAV9 loaded with WSB1 encoding sequence two weeks before IR surgery. H9c2 myocardial cells underwent oxygen-sugar deprivation/reperfusion (OGD/R) to mimic IR, and transfected with WSB1 overexpression or silencing plasmid to alter the expression of WSB1. Results WSB1 was found highly expressed in penumbra of myocardial IR rats, and the WSB1 overexpression relieved IR-induced cardio dysfunction, myocardial infarct and pathological damage, and cardiomyocyte death in penumbra. The ectopic expression of WSB1 in H9c2 myocardial cells mitigated OGD/R-caused apoptosis, and silencing of WSB1 exacerbated the apoptosis. In addition, WSB1 activated β-catenin signaling, which was deactivated under the ischemic condition. The co-immunoprecipitation results revealed that WSB1 mediated ubiquitination and degradation of glycogen synthase kinase 3 beta (GSK3β) as an E3 ligase in myocardial cells. The effects of WSB1 on myocardial cells under ischemic conditions were abolished by an inhibitor of β-catenin signaling. Conclusion WSB1 activated β-catenin pathway by promoting the ubiquitination of GSK3β, and restrained IR-induced myocardial injury. These findings might provide novel insights for clinical treatment of myocardial ischemic patients.

Funder

National Natural Science Foundation of China

High-level Talent Project of Hainan Natural Science Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3