Club cell protein 16 in sera from trauma patients modulates neutrophil migration and functionality via CXCR1 and CXCR2

Author:

Xu Baolin,Janicova Andrea,Vollrath Jan Tilmann,Störmann Philipp,Martin Lukas,Marzi Ingo,Wutzler Sebastian,Hildebrand Frank,Ehnert Sabrina,Relja BornaORCID

Abstract

Abstract Background Club Cell protein (CC)16 correlates with lung injury and respiratory complications, which are in part triggered by polymorphonuclear leukocytes (PMNL) in severely traumatized patients (TP). CC16 exerts anti-inflammatory and immunosuppressive effects, however, its influence on PMNL functions after trauma is unknown. Here, we evaluated whether CC16 present in sera from TP could modify the biological functions of PMNL. Methods Sera from 16 severely injured TP without pneumonia (no P, n = 8) or with pneumonia (P, n = 8) were collected at admission to emergency department (ED) and 1 day prior pneumonia and pre-incubated with or without anti-CC16 antibody for CC16 neutralization. Samples from the equal post-injury days in the corresponding no P group were used. Neutrophils were isolated from healthy volunteers (HV, n = 5) and incubated with 20% of the serum medium from TP, respectively. In PMNL, CD62L, CD11b/CD18 and CD31 expression, migratory capacity, phagocytosis rate, oxidative burst and apoptosis were investigated. In isolated PMNL, CXCR1 and CXCR2 were neutralized before stimulation with CC16, and oxidative burst, phagocytosis and apoptosis were analyzed in neutrophils and their subsets. Results Serum from the P group enhanced significantly PMNL migration compared to no P group, while CC16-neutralization further increased the migratory rate of PMNL in both groups. CC16-neutralization increased significantly the expression of CD62L in the P group at ED. Oxidative burst was significantly increased in the P group vs. no P during the study period. CC16 seemed to have no influence on oxidative burst and phagocytosis in TP. However, in a more controlled study design, CC16 induced a significant increase of oxidative burst and a decrease of apoptosis of CD16+ granulocytes. These effects were markedly observed in mature CD16brightCD62Lbright and immune suppressive CD16brightCD62Ldim neutrophils. In mature subset, CXCR1 and CXCR2 neutralization diminished CC16-induced effects. Conclusions CC16 in sera from multiply traumatized patients, notably of those with pneumonia, has significant effects on PMNL. The results suggest an association of CC16 with CXCR1 and CXCR2. Our data suggest that CC16 reduces the migratory capacity of PMNL and thus modulates their function in patients with respiratory complications after trauma.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3