Abstract
Abstract
Background
Apoptosis and oxidative stress are the main etiology of age related cataract (ARC). This article aims to investigate the role of WRN in lens epithelial cells (LECs).
Methods
We estimated the methylation level of WRN in anterior lens capsule tissues of ARC patients. SRA01/04 (LECs) cells were treated with H2O2 or combined with 5-aza-2-deoxycytidine (5-Aza-CdR) or chloroquine. CCK8 and flow cytometry were performed to explore proliferation and apoptosis. The content of ROS was detected by fluorescent probe DCFH-DA. The gene and protein expression was assessed by quantitative real-time PCR or western blot.
Results
WRN was down-regulated and the methylation level of WRN was increased in the anterior lens capsule tissues. WRN overexpression and 5-Aza-CdR enhanced proliferation and repressed apoptosis and oxidative stress of SRA01/04 cells. 5-Aza-CdR enhanced WRN expression. WRN knockdown inhibited proliferation and promoted apoptosis and oxidative stress of SRA01/04 cells, which was rescued by 5-Aza-CdR. WRN overexpression and 5-Aza-CdR repressed ATM/p53 signaling pathway. Furthermore, chloroquine inhibited proliferation and promoted apoptosis and oxidative stress of SRA01/04 cells by activating ATM/p53 signaling pathway. The influence conferred by chloroquine was abolished by WRN overexpression.
Conclusion
Our study reveals that DNA methylation mediated WRN inhibits apoptosis and oxidative stress of human LECs through ATM/p53 signaling pathway.
Funder
Department of Education Anhui Province
Publisher
Springer Science and Business Media LLC
Subject
Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献