MiR-128-3p inhibits vascular smooth muscle cell proliferation and migration by repressing FOXO4/MMP9 signaling pathway

Author:

Qu ChuanORCID,Liu Xin,Guo Yan,Fo Yuhong,Chen Xiuhuan,Zhou Jining,Yang Bo

Abstract

Abstract Background MicroRNAs (miRNAs) have been identified as important participants in the development of atherosclerosis (AS). The present study explored the role of miR-128-3p in the dysfunction of vascular smooth muscle cells (VSMCs) and the underlying mechanism. Methods Human VSMCs and ApoE knockout (ApoE−/−) C57BL/6J mice were used to establish AS cell and animal models, respectively. Expression levels of miR-128-3p, forkhead box O4 (FOXO4) and matrix metallopeptidase 9 (MMP9) were detected using qRT-PCR and Western blot, respectively. CCK-8, BrdU, and Transwell assays as well as flow cytometry analysis were performed to detect the proliferation, migration and apoptosis of VSMCs. Levels of inflammatory cytokines and lipids in human VSMCs, mice serum and mice VSMCs were also determined. The binding site between miR-128-3p and 3′UTR of FOXO4 was confirmed using luciferase reporter gene assay. Results MiR-128-3p was found to be decreased in AS patient serum, ox-LDL-treated VSMCs, AS mice serum and VSMCs of AS mice. Transfection of miR-128-3p mimics suppressed the proliferation and migration of VSMCs, accompanied by the promoted apoptosis and the decreased levels of inflammatory cytokines. Further experiments confirmed the interaction between miR-128-3p and FOXO4. Augmentation of FOXO4 or MMP9 reversed the effects of miR-128-3p. Besides, miR-128-3p inhibited triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) but increased high-density lipoprotein cholesterol (HDL-C) in the serum of AS mice. Conclusion MiR-128-3p repressed the proliferation and migration of VSMCs through inhibiting the expressions of FOXO4 and MMP9.

Publisher

Springer Science and Business Media LLC

Subject

Genetics(clinical),Genetics,Molecular Biology,Molecular Medicine

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3