TOP2A deficiency leads to human recurrent spontaneous abortion and growth retardation of mouse pre-implantation embryos

Author:

Duan Yuhan,Fu Huijia,Huang Jiayu,Yin Nanlin,Liu Linhong,Liu XiruORCID

Abstract

Abstract Background Recurrent spontaneous abortion (RSA), is a dangerous pregnancy-related condition and is a subject of debate in the gynaecology and obstetrics communities. The objective of this study was to determine the function of DNA Topoisomerase II Alpha (TOP2A) in RSA and elucidate the underlying molecular mechanisms. Methods In vitro models of TOP2A-knockdown and -overexpression were generated by transfecting specific sh-RNA lentivirus and overexpression plasmid, respectively. An in vitro TOP2A inhibition model was established by culturing mouse embryos at the two-cell stage in a medium containing PluriSIn2, a TOP2A inhibitor. Immunohistochemical staining was used to analyse expression of TOP2A in villi tissues of patients with RSA. Western blotting and qRT-PCR were used to analyse the expression of TOP2A and proteins involved in trophoblast functions, the FOXO signalling pathway, and the development of pre-implantation embryos. 5-Ethynyl-2′-deoxyuridine staining, TUNEL assay and flow cytometry were used to further evaluate the effect of TOP2A on cell proliferation and apoptosis. Transwell and wound healing assays were used to evaluate migration and invasion. Moreover, the effect of TOP2A inhibitor on embryos was determined by immunofluorescence and mitochondrial-related dyes. Results Evaluation of clinical samples revealed that the villi tissues of patients that have experienced RSA had lower TOP2A expression compared with that from women who have experienced normal pregnancy (P < 0.01). In vitro, TOP2A knockdown decreased the proliferation, migration, and invasion of trophoblast cell lines, and increased apoptosis and activation of the FOXO signalling pathway (P < 0.05). Conversely, TOP2A overexpression reversed these effects. Moreover, in vivo experiments confirmed that inhibition of TOP2A impairs trophectoderm differentiation, embryonic mitochondrial function as well as the developmental rate; however, no differences were noted in the expression of zygotic genome activation-related genes. Conclusions Collectively, our data suggest that lower TOP2A expression is related to RSA as it inhibits trophoblast cell proliferation, migration, and invasion by activation of the FOXO signalling pathway. Additionally, TOP2A inhibition resulted in impaired development of pre-implantation embryos in mice, which could be attributed to excessive oxidative stress. Graphical Abstract

Funder

Chongqing Municipal Health Commission & Chongqing Science and Technology Bureau

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3