Targeting CK2 mediated signaling to impair/tackle SARS-CoV-2 infection: a computational biology approach

Author:

Miranda JamiletORCID,Bringas Ricardo,Fernandez-de-Cossio Jorge,Perera-Negrin Yasser

Abstract

Abstract Background Similarities in the hijacking mechanisms used by SARS-CoV-2 and several types of cancer, suggest the repurposing of cancer drugs to treat Covid-19. CK2 kinase antagonists have been proposed for cancer treatment. A recent study in cells infected with SARS-CoV-2 found a significant CK2 kinase activity, and the use of a CK2 inhibitor showed antiviral responses. CIGB-300, originally designed as an anticancer peptide, is an antagonist of CK2 kinase activity that binds to the CK2 phospho-acceptor sites. Recent preliminary results show the antiviral activity of CIGB-300 using a surrogate model of coronavirus. Here we present a computational biology study that provides evidence, at the molecular level, of how CIGB-300 may interfere with the SARS-CoV-2 life cycle within infected human cells. Methods Sequence analyses and data from phosphorylation studies were combined to predict infection-induced molecular mechanisms that can be interfered by CIGB-300. Next, we integrated data from multi-omics studies and data focusing on the antagonistic effect on the CK2 kinase activity of CIGB-300. A combination of network and functional enrichment analyses was used. Results Firstly, from the SARS-CoV studies, we inferred the potential incidence of CIGB-300 in SARS-CoV-2 interference on the immune response. Afterwards, from the analysis of multiple omics data, we proposed the action of CIGB-300 from the early stages of viral infections perturbing the virus hijacking of RNA splicing machinery. We also predicted the interference of CIGB-300 in virus-host interactions that are responsible for the high infectivity and the particular immune response to SARS-CoV-2 infection. Furthermore, we provided evidence of how CIGB-300 may participate in the attenuation of phenotypes related to muscle, bleeding, coagulation and respiratory disorders. Conclusions Our computational analysis proposes putative molecular mechanisms that support the antiviral activity of CIGB-300.

Funder

Center for Genetic Engineering and Biotechnology

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine

Reference92 articles.

1. Recknor CP. Evaluating safety, pharmacokinetics and clinical benefit of silmitasertib (CX-4945) in subjects with moderate COVID-19. https://www.clinicaltrialsgov/ct2/show/record/NCT04663737. 2020.

2. Abe M, Lin J, Nagata K, Okuwaki M. Selective regulation of type II interferon-inducible genes by NPM1/nucleophosmin. FEBS Lett. 2018;592(2):244–55.

3. Akbar MR, Pranata R, Wibowo A, Lim MA, Sihite TA, Martha JW. The prognostic value of elevated creatine kinase to predict poor outcome in patients with COVID-19—a systematic review and meta-analysis. Diabetes Metab Syndr. 2021;15(2):529–34.

4. Batista-Albuerne N, González-Méndez L, García-García I, et al. Phase I study of CIGB-300 administered intravenously in patients with relapsed/refractory solid tumors. J Med Oncol. 2018;1(1):4.

5. Blanco-Melo D, Nilsson-Payant BE, Liu WC, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020;181(5):1036–45.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3