Molecular landscape of IDH-mutant astrocytoma and oligodendroglioma grade 2 indicate tumor purity as an underlying genomic factor

Author:

Zhao Binghao,Xia Yu,Yang Fengchun,Wang Yaning,Wang Yuekun,Wang Yadong,Dai Congxin,Wang Yu,Ma WenbinORCID

Abstract

Abstract Background IDH-mutant astrocytoma and oligodendroglioma have an indolent natural history and are recognized as distinct entities of neoplasms. There is little knowledge on the molecular differences between IDH-mutant astrocytoma and oligodendroglioma grade 2. Therefore, we investigated the multiomics and clinical data regarding these two types of tumors. Method In silico analyses were performed around mRNA, somatic mutations, copy number alternations (CNAs), DNA methylation, microRNA (miRNA), epigenetics, immune microenvironment characterization and clinical features of the two types of gliomas. A diagnostic model incorporating tumor purity was further established using machine learning algorithms, and the predictive value was evaluated by receiver operative characteristic curves. Results Both types of gliomas shared chromosomal instability, and astrocytomas exhibited increased total CNAs compared to oligodendrogliomas. Oligodendrogliomas displayed distinct chromosome 4 (chr 4) loss, and subtyping of chr 7 gain/chr 4 loss (+ 7/− 4) presented the worst survival (P = 0.004) and progression-free interval (PFI) (P < 0.001). In DNA damage signatures, oligodendroglioma had a higher subclonal genome fraction (P < 0.001) and tumor purity (P = 0.001), and astrocytoma had a higher aneuploidy score (P < 0.001). Furthermore, astrocytomas exhibited inflamed immune cell infiltration, activated T cells and a potential response to immune checkpoint inhibitors (ICIs), while oligodendrogliomas were more homogeneous with increased tumor purity and decreased aggression. The tumor purity-involved diagnostic model exhibited great accuracy in identifying astrocytoma and oligodendroglioma. Conclusion This study addresses the similarities and differences between IDH-mutant astrocytoma and oligodendroglioma grade 2 and facilitates a deeper understanding of their molecular features, immune microenvironment, tumor purity and prognosis. The diagnostic tool developed using machine learning may offer support for clinical decisions.

Funder

Natural Science Foundation of Beijing Municipality

Tsinghua University-Peking Union Medical College Hospital Initiative Scientific Research Program

Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3