PLK1 protects intestinal barrier function during sepsis by targeting mitochondrial dynamics through TANK-NF-κB signalling

Author:

Cao Ying-Ya,Zhang Yuan,Gerile Wuyun,Guo Yan,Wu Li-Na,Wu Li-Li,Song Kai,Lu Wei-Hua,Yu Jian-BoORCID

Abstract

Abstract Background Intestinal barrier integrity in the pathogenesis of sepsis is critical. Despite an abundance of evidence, the molecular mechanism of the intestinal barrier in sepsis pathology remains unclear. Here, we report a protective role of polo-like kinase 1 (PLK1) in intestinal barrier integrity during sepsis. Methods Mice with PLK1 overexpression (CAG-PLK1 mice) or PLK1 inhibition (BI2536-treated mice) underwent caecal ligation and puncture (CLP) to establish a sepsis model. The intestinal barrier function, apoptosis in the intestinal epithelium, mitochondrial function and NF-κB signalling activity were evaluated. To suppress the activation of NF-κB signalling, the NF-κB inhibitor PDTC, was administered. The Caco-2 cell line was chosen to establish an intestinal epithelial injury model in vitro. Results Sepsis destroyed intestinal barrier function, induced excessive apoptosis in the intestinal epithelium, and disrupted the balance of mitochondrial dynamics in wild-type mice. PLK1 overexpression alleviated sepsis-induced damage to the intestinal epithelium by inhibiting the activation of NF-κB signalling. PLK1 colocalized and interacted with TANK in Caco-2 cells. Transfecting Caco-2 cells with TANK-SiRNA suppressed NF-κB signalling and ameliorated mitochondrial dysfunction, apoptosis and the high permeability of cells induced by lipopolysaccharide (LPS). Furthermore, TANK overexpression impaired the protective effect of PLK1 on LPS-induced injuries in Caco-2 cells. Conclusion Our findings reveal that the PLK1/TANK/NF-κB axis plays a crucial role in sepsis-induced intestinal barrier dysfunction by regulating mitochondrial dynamics and apoptosis in the intestinal epithelium and might be a potential therapeutic target in the clinic.

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3