AGEs promote atherosclerosis by increasing LDL transcytosis across endothelial cells via RAGE/NF-κB/Caveolin-1 pathway

Author:

Shu Meng,Cheng Wenzhuo,Jia Xiong,Bai Xiangli,Zhao Ying,Lu Yajing,Zhu Lin,Zhu Yan,Wang Li,Shu Yan,Song Yi,Jin SiORCID

Abstract

Abstract Objective To elucidate the mechanism whereby advanced glycation end products (AGEs) accelerate atherosclerosis (AS) and to explore novel therapeutic strategies for atherosclerotic cardiovascular disease. Methods and results The effect of AGEs on low-density lipoprotein (LDL) transcytosis across endothelial cells (ECs) was assessed using an in vitro model of LDL transcytosis. We observed that AGEs activated the receptor for advanced glycation end products (RAGE) on the surface of ECs and consequently upregulated Caveolin-1, which in turn increased caveolae-mediated LDL transcytosis and accelerated AS progression. Our molecular assessment revealed that AGEs activate the RAGE-NF-κB signaling, which then recruits the NF-κB subunit p65 to the RAGE promoter and consequently enhances RAGE transcription, thereby forming a positive feedback loop between the NF-κB signaling and RAGE expression. Increased NF-κB signaling ultimately upregulated Caveolin-1, promoting LDL transcytosis, and inhibition of RAGE suppressed AGE-induced LDL transcytosis. In ApoE−/− mice on a high-fat diet, atherosclerotic plaque formation was accelerated by AGEs but suppressed by EC-specific knockdown of RAGE. Conclusion AGEs accelerate the development of diabetes-related AS by increasing the LDL transcytosis in ECs through the activation of the RAGE/NF-κB/Caveolin-1 axis, which may be targeted to prevent or treat diabetic macrovascular complications.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

National Key R&D Program of China

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3