Resveratrol reduces ROS-induced ferroptosis by activating SIRT3 and compensating the GSH/GPX4 pathway

Author:

Wang Xingjie,Shen Tianli,Lian Jie,Deng Kai,Qu Chao,Li Enmeng,Li Gan,Ren Yiwei,Wang Zijun,Jiang Zhengdong,Sun Xuejun,Li XuqiORCID

Abstract

Abstract Background Intestinal ischemia-reperfusion injury occurs in acute intestinal obstruction, intussusception, acute mesenteric artery embolism, and other diseases and can lead to local intestinal necrosis, distant organ involvement, or systemic reactions, with high morbidity and mortality. Ferroptosis plays a crucial role in intestinal ischemia-reperfusion injury, and inhibition of ferroptosis may provide new approaches for treating the disease. SIRT3 protects cells from oxidative stress and may be involved in the process of ferroptosis. We hypothesized that resveratrol, an agonist of SIRT3, could ameliorate intestinal ischemia-reperfusion injury by compensating the GSH/GPX4 pathway. Methods Intestinal ischemia-reperfusion (I/R) and Caco-2 hypoxia-reoxygenation models were established. Transmission electron microscopy was used to assess mitochondrial function; the Chiu’s score was used to evaluate the degree of intestinal mucosal injury based on HE staining; and Western blot was used to detect the SIRT3/FoxO3a pathway, tight junction proteins and ferroptosis-related protein expression. Sirt3-/- C57, shSIRT3-Caco-2 cells and siFoxO3a-Caco-2 cells were established. C11-BODIPY was used to detect lipid peroxide in cells; FD4 and IFABP were used to detect intestinal permeability; MitoSOX was used to detect ROS levels; and MitoTracker and immunofluorescence colocalization were used to detect SIRT3 levels. Results In the intestinal I/R model, I/R injury occurs mainly during the reperfusion period and leads to ferroptosis through the GSH/GPX4 pathway. Resveratrol could reduce ferroptosis and ameliorate I/R injury by activating SIRT3. In Sirt3-/- mice, more intestinal mucosal cells underwent ferroptosis, I/R injury was more severe, and resveratrol lost the ability to ameliorate I/R injury. In addition, hypoxia-reoxygenation increased RSL3-induced ferroptosis sensitivity in Caco-2 cells in vitro. In the presence of shSIRT3 or RSL3 alone, resveratrol could ameliorate Caco-2 ferroptosis, but not RSL3-induced shSIRT3-Caco-2 ferroptosis. Furthermore, resveratrol might activate the SIRT3/FoxO3a pathway, increase the expression of SOD2 and catalase, and inhibit ROS generation, thus reducing lipid peroxidation and ferroptosis. Conclusion To date, this is the first study to show that resveratrol ameliorates intestinal ischemia-reperfusion injury by activating SIRT3 and reducing ferroptosis. Resveratrol can reduce intestinal ischemia-reperfusion injury by activating the SIRT3/FoxO3a pathway, increasing the expression of SOD2 and catalase, reducing ROS and LPO production, compensating for the GSH/GPX4 pathway and inhibiting ferroptosis. Graphical abstract

Funder

National Natural Science Foundation of China

the Key Research and Development Plan of Shaanxi Province

the Institutional Foundation of the First Affiliated Hospital of Xi’an Jiaotong University

First Affiliated Hospital of Zhengzhou University

Nanjing Tianqing Scientific Foundation of the First Affiliated Hospital of Xi’an Jiaotong University

Publisher

Springer Science and Business Media LLC

Subject

Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3