Identification of early biomarkers of transcriptomics in alveolar macrophage for the prognosis of intubated ARDS patients

Author:

Shi Songchang,Wei Shuo,Pan Xiaobin,Zhang Lihui,Zhang Shujuan,Wang Xincai,Shi Songjing,Lin Wei

Abstract

AbstractBackgroundCurrently, the rate of morbidity and mortality in acute respiratory distress syndrome (ARDS) remains high. One of the potential reasons for the poor and ineffective therapies is the lack of early and credible indicator of risk prediction that would help specific treatment of severely affected ARDS patients. Nevertheless, assessment of the clinical outcomes with transcriptomics of ARDS by alveolar macrophage has not been performed.MethodsThe expression data GSE116560 was obtained from the Gene Expression Omnibus databases (GEO) in NCBI. This dataset consists of 68 BAL samples from 35 subjects that were collected within 48 h of ARDS. Differentially expressed genes (DEGs) of different outcomes were analyzed using R software. The top 10 DEGs that were up- or down-regulated were analyzed using receiver operating characteristic (ROC) analysis. Kaplan–Meier survival analysis within two categories according to cut-off and the value of prediction of the clinical outcomes via DEGs was verified. GO enrichment, KEGG pathway analysis, and protein–protein interaction were also used for functional annotation of key genes.Results24,526 genes were obtained, including 235 up-regulated and 292 down-regulated DEGs. The gene ADORA3 was chosen as the most obvious value to predict the outcome according to the ROC and survival analysis. For functional annotation, ADORA3 was significantly augmented in sphingolipid signaling pathway, cGMP-PKG signaling pathway, and neuroactive ligand-receptor interaction. Four genes (ADORA3, GNB1, NTS, and RHO), with 4 nodes and 6 edges, had the highest score in these clusters in the protein–protein interaction network.ConclusionsOur results show that the prognostic prediction of early biomarkers of transcriptomics as identified in alveolar macrophage in ARDS can be extended for mechanically ventilated critically ill patients. In the long term, generalizing the concept of biomarkers of transcriptomics in alveolar macrophage could add to improving precision-based strategies in the ICU patients and may also lead to identifying improved strategy for critically ill patients.

Publisher

Springer Science and Business Media LLC

Subject

Pulmonary and Respiratory Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3