Effects of long-acting muscarinic antagonists on promoting ciliary function in airway epithelium

Author:

Katsumata Mineo,Fujisawa TomoyukiORCID,Kamiya Yosuke,Tanaka Yuko,Kamiya Chiaki,Inoue Yusuke,Hozumi Hironao,Karayama Masato,Suzuki Yuzo,Furuhashi Kazuki,Enomoto Noriyuki,Nakamura Yutaro,Inui Naoki,Maekawa Masato,Setou Mitsutoshi,Watanabe Hiroshi,Ikegami Koji,Suda Takafumi

Abstract

AbstractBackgroundMucociliary clearance (MCC) is an essential defense mechanism in airway epithelia for removing pathogens from the respiratory tract. Impaired ciliary functions and MCC have been demonstrated in asthma and chronic obstructive pulmonary disease (COPD). Long-acting muscarinic antagonists (LAMAs) are a major class of inhaled bronchodilators, which are used for treating asthma and COPD; however, the effects of LAMAs on ciliary function remain unclear. This study aimed to identify the effects of LAMAs on airway ciliary functions.MethodsWild-type BALB/c mice were treated with daily intranasal administrations of glycopyrronium for 7 days, and tracheal samples were collected. Cilia-driven flow and ciliary activity, including ciliary beat frequency (CBF), ciliary beating amplitude, effective stroke velocity, recovery stroke velocity and the ratio of effective stroke velocity to recovery stroke velocity, were analyzed by imaging techniques. Using in vitro murine models, tracheal tissues were transiently cultured in media with/without LAMAs, glycopyrronium or tiotropium, for 60 min. Cilia-driven flow and ciliary activity were then analyzed. Well-differentiated normal human bronchial epithelial (NHBE) cells were treated with glycopyrronium, tiotropium, or vehicle for 60 min, and CBF was evaluated. Several mechanistic analyses were performed.ResultsIntranasal glycopyrronium administration for 7 days significantly increased cilia-driven flow and ciliary activity in murine airway epithelium. In the murine tracheal organ culture models, treatment with glycopyrronium or tiotropium for 60 min significantly increased cilia-driven flow and ciliary activity in airway epithelium. Further, we confirmed that 60-min treatment with glycopyrronium or tiotropium directly increased CBF in well-differentiated NHBE cells. In the mechanistic analyses, neither treatment with glycopyrronium nor tiotropium affected intracellular calcium ion concentrations in well-differentiated NHBE cells. Glycopyrronium did not increase protein kinase A activity in well-differentiated NHBE cells. Moreover, glycopyrronium had no effect on extracellular adenosine triphosphate concentration.ConclusionsLAMAs exert a direct effect on airway epithelium to enhance ciliary function, which may improve impaired MCC in asthma and COPD. Further investigations are warranted to elucidate the underlying mechanisms of the effects of LAMAs on the promotion of airway ciliary function.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Pulmonary and Respiratory Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3