Salt-inducible kinase 2 (SIK2) inhibitor ARN-3236 attenuates bleomycin-induced pulmonary fibrosis in mice

Author:

Zou Liangneng,Hong Dequn,Li Kecong,Jiang Bingyuan

Abstract

Abstract Background Pulmonary fibrosis is a fatal lung disease with complex pathogenesis and limited effective therapies. Salt-inducible kinase 2 (SIK2) is a kinase that phosphorylates CRTCs and regulates many physiological processes. However, the role of SIK2 on pulmonary fibrosis remains unclear, and whether SIK2 inhibitor can attenuate pulmonary fibrosis is unknown. Method We subjected human fetal lung fibroblasts (HFLs) to transforming growth factor-β1 (5 ng/mL) for 12 h, and examined the expression of SIK2, CRTCs and pCRTCs in fibroblasts by western-blot. To address the roles of SIK2 and CRTCs involved in the progression of pulmonary fibrosis, HFLs were treated with a small-molecule inhibitor ARN-3236 or by siRNA-mediated knockdown of SIK2 expression. Pulmonary fibrosis model was established with mice by exposing to bleomycin, and assessed by H&E and Masson’s trichrome staining. COL1A and α-SMA distributions were detected in lung tissues by immunohistochemical staining. Results We discovered that SIK2 and phosphorylated-CRTC2 were expressed at a low basal level in normal lung tissues and quiescent fibroblasts, but increased in fibrotic lung tissues and activated fibroblasts. Inhibition of SIK2 by ARN-3236 prevented the fibroblasts differentiation and extracellular matrix expression in HFLs and attenuated bleomycin-induced pulmonary fibrosis in mice. Mechanistically, inactivation of SIK2 resulted in the dephosphorylation and nuclear translocation of CRTC2. Within the nucleus, CRTC2 binds to CREB, promoting CREB-dependent anti-fibrotic actions. Conclusion In conclusion, our results elucidated a previously unexplored role of SIK2 in pulmonary fibrosis, and identified SIK2 as a new target for anti-fibrosis medicines.

Publisher

Springer Science and Business Media LLC

Subject

Pulmonary and Respiratory Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3