Machine learning algorithm for early-stage prediction of severe morbidity in COVID-19 pneumonia patients based on bio-signals

Author:

Baik Seung Min,Kim Kyung Tae,Lee Haneol,Lee Jung HwaORCID

Abstract

Abstract Background Paralysis of medical systems has emerged as a major problem not only in Korea but also globally because of the COVID-19 pandemic. Therefore, early identification and treatment of COVID-19 are crucial. This study aims to develop a machine-learning algorithm based on bio-signals that predicts the infection three days in advance before it progresses from mild to severe, which may necessitate high-flow oxygen therapy or mechanical ventilation. Methods The study included 2758 hospitalized patients with mild severity COVID-19 between July 2020 and October 2021. Bio-signals, clinical information, and laboratory findings were retrospectively collected from the electronic medical records of patients. Machine learning methods included random forest, random forest ranger, gradient boosting machine, and support vector machine (SVM). Results SVM showed the best performance in terms of accuracy, kappa, sensitivity, detection rate, balanced accuracy, and run-time; the area under the receiver operating characteristic curve was also quite high at 0.96. Body temperature and SpO2 three and four days before discharge or exacerbation were ranked high among SVM features. Conclusions The proposed algorithm can predict the exacerbation of severity three days in advance in patients with mild COVID-19. This prediction can help effectively manage the reallocation of appropriate medical resources in clinical settings. Therefore, this algorithm can facilitate adequate oxygen therapy and mechanical ventilator preparation, thereby improving patient prognosis, increasing the efficiency of medical systems, and mitigating the damage caused by a global pandemic.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Pulmonary and Respiratory Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3