Artificial intelligence-based model for predicting pulmonary arterial hypertension on chest x-ray images

Author:

Imai Shun,Sakao Seiichiro,Nagata Jun,Naito Akira,Sekine Ayumi,Sugiura Toshihiko,Shigeta Ayako,Nishiyama Akira,Yokota Hajime,Shimizu Norihiro,Sugawara Takeshi,Nomi Toshiaki,Honda Seiwa,Ogaki Keisuke,Tanabe Nobuhiro,Baba Takayuki,Suzuki Takuji

Abstract

Abstract Background Pulmonary arterial hypertension is a serious medical condition. However, the condition is often misdiagnosed or a rather long delay occurs from symptom onset to diagnosis, associated with decreased 5-year survival. In this study, we developed and tested a deep-learning algorithm to detect pulmonary arterial hypertension using chest X-ray (CXR) images. Methods From the image archive of Chiba University Hospital, 259 CXR images from 145 patients with pulmonary arterial hypertension and 260 CXR images from 260 control patients were identified; of which 418 were used for training and 101 were used for testing. Using the testing dataset for each image, the algorithm outputted a numerical value from 0 to 1 (the probability of the pulmonary arterial hypertension score). The training process employed a binary cross-entropy loss function with stochastic gradient descent optimization (learning rate parameter, α = 0.01). In addition, using the same testing dataset, the algorithm’s ability to identify pulmonary arterial hypertension was compared with that of experienced doctors. Results The area under the curve (AUC) of the receiver operating characteristic curve for the detection ability of the algorithm was 0.988. Using an AUC threshold of 0.69, the sensitivity and specificity of the algorithm were 0.933 and 0.982, respectively. The AUC of the algorithm’s detection ability was superior to that of the doctors. Conclusion The CXR image-derived deep-learning algorithm had superior pulmonary arterial hypertension detection capability compared with that of experienced doctors.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3