Abstract
Abstract
Background
Tracheostomy tube capping is a commonly used test to determine if the tracheostomy tube can be removed. The success of the capping trial depends on the patient’s ability to maintain sufficient spontaneous breathing with an occluded tracheostomy tube. The impact of an occluded tracheotomy tube on airway resistance is currently unknown. The aim of this study was to investigate tracheal pressure during capping or stoma button insertion and potential determinants concerning cuff.
Methods
Eight cuffed and uncuffed tracheostomy tubes and three stoma buttons of various manufacturers and sizes were inserted into the trachea model. Cuffs were completely deflated or contained atmospheric pressure. The trachea was ventilated bidirectional with a respirator in volume-controlled mode and volume flows 15–60 L/min. Tracheal pressure drop during inspiration as a parameter of pressure required to move gas through the airway was measured.
Results
Tracheal pressure drops occurred linearly or irregularly during capping trials to a maximum of 4.2 kPa at flow rates of 60 L/min for atmospheric pressure cuffs. In tracheostomy tubes with completely deflated cuffs, pressure drop in the trachea reaches a maximum of 3.4 kPa at a flow rate of 60 L/min. For tracheostomy tubes with cuff smaller inner or outer diameters do not regularly result in lower tracheal pressure drop. The pressure drop varies between different tracheostomy tubes depending on the manufacturer. In cuffed tracheostomy tubes, we observed three phenomena: sail-like positioning, folding over, and tightening of the cuff during flow. The maximum tracheal pressure drop during stoma button insertion reaches 0.014 kPa.
Conclusions
The cuff is a central element for the pressure drop in the airway and thus airway resistance during spontaneous translaryngeal breathing with a capped TT. Complete deflation reduces the pressure drop in the trachea. Due to deformation of the cuff, measured pressures are irregular as the volume flow is increased. Incomplete deflated cuffs and material characteristics of tracheostomy tubes and cuffs in addition to anatomical and clinical variables may cause unsuccessful capping trials due to increased airway resistance. All stoma buttons showed that pressure drop and thus airway resistance due to stoma buttons has no clinical relevance.
Publisher
Springer Science and Business Media LLC
Subject
Pulmonary and Respiratory Medicine
Reference10 articles.
1. Statistisches Bundesamt (Destatis). Fallpauschalenbezogene Krankenhausstatistik (DRG-Statistik) Operationen und Prozeduren der vollstationären Patientinnen und Patienten in Krankenhäusern (4-Steller). 2022. https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Krankenhaeuser/_inhalt.html#_onfmux288. Accessed 17 Nov 2022.
2. Wilkinson K, Martin I, Freeth H, Kelly K, Mason H. On the right trach? A review of the care received by patients who underwent a tracheostomy. A report by the National Confidential Enquiry into Patient Outcome and Death 2014. https://www.ncepod.org.uk/2014report1/downloads/OnTheRightTrach_FullReport.pdf. Accessed 27 Apr 2022.
3. Ochoa ME, Del Marín MC, Frutos-Vivar F, et al. Cuff-leak test for the diagnosis of upper airway obstruction in adults: a systematic review and meta-analysis. Intensive Care Med. 2009;35:1171–9.
4. Marchese S, Corrado A, Scala R, Corrao S, Ambrosino N. Tracheostomy in patients with long-term mechanical ventilation: a survey. Respir Med. 2010;104:749–53.
5. Kutsukutsa J, Kuupiel D, Monori-Kiss A, Del Rey-Puech P, Mashamba-Thompson TP. Tracheostomy decannulation methods and procedures for assessing readiness for decannulation in adults: a systematic scoping review. Int J Evid Based Healthc. 2019;17:74–91.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献