Abstract
Abstract
Background
Due to the fact that pulmonary tuberculosis (PTB) is a highly infectious respiratory disease characterized by high herd susceptibility and hard to be treated, this study aimed to search novel effective biomarkers to improve the prognosis and treatment of PTB patients.
Methods
Firstly, bioinformatics analysis was performed to identify PTB-related differentially expressed genes (DEGs) from GEO database, which were then subjected to GO annotation and KEGG pathway enrichment analysis to initially describe their functions. Afterwards, clustering analysis was conducted to identify PTB-related gene clusters and relevant PPI networks were established using the STRING database.
Results
Based on the further differential and clustering analyses, 10 DEGs decreased during PTB development were identified and considered as candidate hub genes. Besides, we retrospectively analyzed some relevant studies and found that 7 genes (CCL20, PTGS2, ICAM1, TIMP1, MMP9, CXCL8 and IL6) presented an intimate correlation with PTB development and had the potential serving as biomarkers.
Conclusions
Overall, this study provides a theoretical basis for research on novel biomarkers of PTB, and helps to estimate PTB prognosis as well as probe into targeted molecular treatment.
Funder
National Natural Science Foundation of China
Shanghai Changhai Hospital Scientific Research Fund
Publisher
Springer Science and Business Media LLC
Subject
Pulmonary and Respiratory Medicine
Reference34 articles.
1. Grace AG, Mittal A, Jain S, Tripathy JP, Satyanarayana S, Tharyan P, et al. Shortened treatment regimens versus the standard regimen for drug-sensitive pulmonary tuberculosis. Cochrane Database Syst Rev. 2019;12:CD012918.
2. Sambarey A, Devaprasad A, Mohan A, Ahmed A, Nayak S, Swaminathan S, et al. Unbiased identification of blood-based biomarkers for pulmonary tuberculosis by modeling and mining molecular interaction networks. EBioMedicine. 2017;15:112–26.
3. Walzl G, Ronacher K, Hanekom W, Scriba TJ, Zumla A. Immunological biomarkers of tuberculosis. Nat Rev Immunol. 2011;11(5):343–54.
4. Andrade BB, Pavan Kumar N, Mayer-Barber KD, Barber DL, Sridhar R, Rekha VV, et al. Plasma heme oxygenase-1 levels distinguish latent or successfully treated human tuberculosis from active disease. PLoS One. 2013;8(5):e62618.
5. Huang CT, Lee LN, Ho CC, Shu CC, Ruan SY, Tsai YJ, et al. High serum levels of procalcitonin and soluble TREM-1 correlated with poor prognosis in pulmonary tuberculosis. J Inf Secur. 2014;68(5):440–7.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献