Author:
Shen Weimin,Jiang Ye,Xu Ying,Qian Xiaoli,Jia Jianwei,Ding Yuejia,He Yuhan,Pan Qing,Zhuang Jinyang,Ge Huiqing,Xu Peifeng
Abstract
Abstract
Background
Mechanical ventilation can cause acute atrophy and injury in the diaphragm, which are related to adverse clinical results. However, the underlying mechanisms of ventilation-induced diaphragm dysfunction (VIDD) have not been well elucidated. The current study aimed to explore the role of cellular senescence in VIDD.
Methods
A total of twelve New Zealand rabbits were randomly divided into 2 groups: (1) spontaneously breathing anaesthetized animals (the CON group) and (2) mechanically ventilated animals (for 48 h) in V-ACV mode (the MV group). Respiratory parameters were collected during ventilation. Diaphragm were collected for further analyses.
Results
Compared to those in the CON group, the percentage and density of sarcomere disruption in the MV group were much higher (p < 0.001, both). The mRNA expression of MAFbx and MuRF1 was upregulated in the MV group (p = 0.003 and p = 0.006, respectively). Compared to that in the CON group, the expression of MAFbx and MuRF1 detected by western blotting was also upregulated (p = 0.02 and p = 0.03, respectively). Moreover, RNA-seq showed that genes associated with senescence were remarkably enriched in the MV group. The mRNA expression of related genes was further verified by q-PCR (Pai1: p = 0.009; MMP9: p = 0.008). Transverse cross-sections of diaphragm myofibrils in the MV group showed more intensive positive staining of SA-βGal than those in the CON group. p53-p21 axis signalling was elevated in the MV group. The mRNA expression of p53 and p21 was significantly upregulated (p = 0.02 and p = 0.05, respectively). The western blot results also showed upregulation of p53 and p21 protein expression (p = 0.03 and p = 0.05, respectively). Moreover, the p21-positive staining in immunofluorescence and immunohistochemistry in the MV group was much more intense than that in the CON group (p < 0.001, both).
Conclusions
In a rabbit model, we demonstrated that mechanical ventilation in A/C mode for 48 h can still significantly induce ultrastructural damage and atrophy of the diaphragm. Moreover, p53-dependent senescence might play a role in mechanical ventilation-induced dysfunction. These findings might provide novel therapeutic targets for VIDD.
Funder
Natural Science Foundation of Zhejiang Province
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Pulmonary and Respiratory Medicine
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献