The role of rhIGF-1/BP3 in the prevention of pulmonary hypertension in bronchopulmonary dysplasia and its underlying mechanism

Author:

Qu Sehua,Shan Lianqiang,Chen Xin,Zhang Zhen,Wu Yumeng,Chen Yun,Zhuo Feixiang,Wang Yitong,Dong Huaifu

Abstract

Abstract Background This study aimed to determine whether postnatal treatment with recombinant human IGF-1 (rhIGF-1)/binding peptide 3 (BP3) ameliorates lung injury and prevents pulmonary hypertension (PH) in bronchopulmonary dysplasia (BPD) models. Methods We used two models of BPD in this study: one model that was associated with chorioamnionitis (CA), stimulated by intra-amniotic fluid and exposure to lipopolysaccharide (LPS), whereas the other was exposed to postnatal hyperoxia. Newborn rats were treated with rhIGF-1/BP3 (0.2 mg/Kg/d) or saline via intraperitoneal injection. The study endpoints included the wet/dry weight (W/D) ratio of lung tissues, radial alveolar counts (RACs), vessel density, right ventricular hypertrophy (RVH), lung resistance, and lung compliance. Hematoxylin and eosin (H&E) and Masson staining were used to evaluate the degree of lung injury and pulmonary fibrosis. IGF-1 and eNOS expression were detected using western blotting or quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). The levels of SP-C, E-cadherin, N-cadherin, FSP1, and Vimentin in the lung tissues were detected by immunofluorescence. Results LPS and hyperoxia treatment increased lung injury and pulmonary fibrosis, enhanced RVH and total respiratory resistance, and decreased RAC, pulmonary vascular density and pulmonary compliance in young mice (all p < 0.01). Simultaneously, LPS and hyperoxia induced an increase in epithelial-mesenchymal transition (EMT) in airway epithelial cells. However, rhIGF-1/BP3 treatment reduced lung injury and pulmonary fibrosis, decreased RVH and total respiratory resistance, and enhanced RAC, pulmonary vascular density and pulmonary compliance, as well as inhibited EMT in airway epithelial cells in LPS and hyperoxia treated mice. Conclusion Postnatal rhIGF-1/BP3 treatment relieved the effects of LPS or hyperoxia on lung injury and prevented RVH, providing a promising strategy for the treatment of BPD.

Funder

Natural Science Key Project of Bengbu Medical College

the National Innovation and Entrepreneurship Training Program for College Students

the Key Project of Natural Science Research of Anhui Provincial Department of Education

Publisher

Springer Science and Business Media LLC

Subject

Pulmonary and Respiratory Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3