A cross-omics integrative study of metabolic signatures of chronic obstructive pulmonary disease

Author:

Prokić IvanaORCID,Lahousse Lies,de Vries Maaike,Liu Jun,Kalaoja Marita,Vonk Judith M.,van der Plaat Diana A.,van Diemen Cleo C.,van der Spek Ashley,Zhernakova Alexandra,Fu Jingyuan,Ghanbari Mohsen,Ala-Korpela Mika,Kettunen Johannes,Havulinna Aki S.,Perola Markus,Salomaa Veikko,Lind Lars,Ärnlöv Johan,Stricker Bruno H. C.,Brusselle Guy G.,Boezen H. Marike,van Duijn Cornelia M.,Amin Najaf

Abstract

Abstract Background Chronic obstructive pulmonary disease (COPD) is a common lung disorder characterized by persistent and progressive airflow limitation as well as systemic changes. Metabolic changes in blood may help detect COPD in an earlier stage and predict prognosis. Methods We conducted a comprehensive study of circulating metabolites, measured by proton Nuclear Magnetic Resonance Spectroscopy, in relation with COPD and lung function. The discovery sample consisted of 5557 individuals from two large population-based studies in the Netherlands, the Rotterdam Study and the Erasmus Rucphen Family study. Significant findings were replicated in 12,205 individuals from the Lifelines-DEEP study, FINRISK and the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) studies. For replicated metabolites further investigation of causality was performed, utilizing genetics in the Mendelian randomization approach. Results There were 602 cases of COPD and 4955 controls used in the discovery meta-analysis. Our logistic regression results showed that higher levels of plasma Glycoprotein acetyls (GlycA) are significantly associated with COPD (OR = 1.16, P = 5.6 × 10− 4 in the discovery and OR = 1.30, P = 1.8 × 10− 6 in the replication sample). A bi-directional two-sample Mendelian randomization analysis suggested that circulating blood GlycA is not causally related to COPD, but that COPD causally increases GlycA levels. Using the prospective data of the same sample of Rotterdam Study in Cox-regression, we show that the circulating GlycA level is a predictive biomarker of COPD incidence (HR = 1.99, 95%CI 1.52–2.60, comparing those in the highest and lowest quartile of GlycA) but is not significantly associated with mortality in COPD patients (HR = 1.07, 95%CI 0.94–1.20). Conclusions Our study shows that circulating blood GlycA is a biomarker of early COPD pathology.

Funder

NWO

Longfonds

European Commission

European Community's Seventh Framework Programme

Netherlands Heart Foundation

European Research Council

Finnish Academy

Academy of Finland

Novo Nordisk Fonden

Publisher

Springer Science and Business Media LLC

Subject

Pulmonary and Respiratory Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3