Author:
Noureddine Sofia,Roux-Claudé Pauline,Laurent Lucie,Ritter Ophélie,Dolla Pauline,Karaer Sinan,Claudé Frédéric,Eberst Guillaume,Westeel Virginie,Barnig Cindy
Abstract
Abstract
Background
Cardiopulmonary exercise testing (CPET) is an important clinical tool that provides a global assessment of the respiratory, circulatory and metabolic responses to exercise which are not adequately reflected through the measurement of individual organ system function at rest. In the context of critical COVID-19, CPET is an ideal approach for assessing long term sequelae.
Methods
In this prospective single-center study, we performed CPET 12 months after symptom onset in 60 patients that had required intensive care unit treatment for a severe COVID-19 infection. Lung function at rest and chest computed tomography (CT) scan were also performed.
Results
Twelve months after severe COVID-19 pneumonia, dyspnea was the most frequently reported symptom although only a minority of patients had impaired respiratory function at rest. Mild ground-glass opacities, reticulations and bronchiectasis were the most common CT scan abnormalities. The majority of the patients (80%) had a peak O2 uptake (V′O2) considered within normal limits (median peak predicted O2 uptake (V′O2) of 98% [87.2–106.3]). Length of ICU stay remained an independent predictor of V′O2. More than half of the patients with a normal peak predicted V′O2 showed ventilatory inefficiency during exercise with an abnormal increase of physiological dead space ventilation (VD/Vt) (median VD/VT of 0.27 [0.21–0.32] at anaerobic threshold (AT) and 0.29 [0.25–0.34] at peak) and a widened median peak alveolar-arterial gradient for O2 (35.2 mmHg [31.2–44.8]. Peak PetCO2 was significantly lower in subjects with an abnormal increase of VD/Vt (p = 0.001). Impairments were more pronounced in patients with dyspnea. Peak VD/Vt values were positively correlated with peak D-Dimer plasma concentrations from blood samples collected during ICU stay (r2 = 0.12; p = 0.02) and to predicted diffusion capacity of the lung for carbon monoxide (DLCO) (r2 = − 0.15; p = 0.01).
Conclusions
Twelve months after severe COVID-19 pneumonia, most of the patients had a peak V′O2 considered within normal limits but showed ventilatory inefficiency during exercise with increased dead space ventilation that was more pronounced in patients with persistent dyspnea.
Trial registration: NCT04519320 (19/08/2020).
Funder
This study was supported by a grant from the Don Du Souffle and from SOS Oxygene.
Publisher
Springer Science and Business Media LLC
Subject
Pulmonary and Respiratory Medicine
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献