Development of a natural language processing algorithm to detect chronic cough in electronic health records

Author:

Bali Vishal,Weaver Jessica,Turzhitsky Vladimir,Schelfhout Jonathan,Paudel Misti L.,Hulbert Erin,Peterson-Brandt Jesse,Currie Anne-Marie Guerra,Bakka Dylan

Abstract

Abstract Background Chronic cough (CC) is difficult to identify in electronic health records (EHRs) due to the lack of specific diagnostic codes. We developed a natural language processing (NLP) model to identify cough in free-text provider notes in EHRs from multiple health care providers with the objective of using the model in a rules-based CC algorithm to identify individuals with CC from EHRs and to describe the demographic and clinical characteristics of individuals with CC. Methods This was a retrospective observational study of enrollees in Optum’s Integrated Clinical + Claims Database. Participants were 18–85 years of age with medical and pharmacy health insurance coverage between January 2016 and March 2017. A labeled reference standard data set was constructed by manually annotating 1000 randomly selected provider notes from the EHRs of enrollees with ≥ 1 cough mention. An NLP model was developed to extract positive or negated cough contexts. NLP, cough diagnosis and medications identified cough encounters. Patients with ≥ 3 encounters spanning at least 56 days within 120 days were defined as having CC. Results The positive predictive value and sensitivity of the NLP algorithm were 0.96 and 0.68, respectively, for positive cough contexts, and 0.96 and 0.84, respectively, for negated cough contexts. Among the 4818 individuals identified as having CC, 37% were identified using NLP-identified cough mentions in provider notes alone, 16% by diagnosis codes and/or written medication orders, and 47% through a combination of provider notes and diagnosis codes/medications. Chronic cough patients were, on average, 61.0 years and 67.0% were female. The most prevalent comorbidities were respiratory infections (75%) and other lower respiratory disease (82%). Conclusions Our EHR-based algorithm integrating NLP methodology with structured fields was able to identify a CC population. Machine learning based approaches can therefore aid in patient selection for future CC research studies.

Funder

Merck

Publisher

Springer Science and Business Media LLC

Subject

Pulmonary and Respiratory Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3