Increasing the accuracy of the asthma diagnosis using an operational definition for asthma and a machine learning method

Author:

Joo Hyonsoo,Lee Daeun,Lee Sang Haak,Kim Young Kyoon,Rhee Chin Kook

Abstract

Abstract Introduction Analysis of the National Health Insurance data has been actively carried out for the purpose of academic research and establishing scientific evidences for health care service policy in asthma. However, there has been a limitation for the accuracy of the data extracted through conventional operational definition. In this study, we verified the accuracy of conventional operational definition of asthma, by applying it to a real hospital setting. And by using a machine learning technique, we established an appropriate operational definition that predicts asthma more accurately. Methods We extracted asthma patients using the conventional operational definition of asthma at Seoul St. Mary’s hospital and St. Paul’s hospital at the Catholic University of Korea between January 2017 and January 2018. Among these extracted patients of asthma, 10% of patients were randomly sampled. We verified the accuracy of the conventional operational definition for asthma by matching actual diagnosis through medical chart review. And then we operated machine learning approaches to predict asthma more accurately. Results A total of 4,235 patients with asthma were identified using a conventional asthma definition during the study period. Of these, 353 patients were collected. The patients of asthma were 56% of study population, 44% of patients were not asthma. The use of machine learning techniques improved the overall accuracy. The XGBoost prediction model for asthma diagnosis showed an accuracy of 87.1%, an AUC of 93.0%, sensitivity of 82.5%, and specificity of 97.9%. Major explanatory variable were ICS/LABA,LAMA and LTRA for proper diagnosis of asthma. Conclusions The conventional operational definition of asthma has limitation to extract true asthma patients in real world. Therefore, it is necessary to establish an accurate standardized operational definition of asthma. In this study, machine learning approach could be a good option for building a relevant operational definition in research using claims data.

Funder

Ministry of Health & Welfare, Republic of Korea

Publisher

Springer Science and Business Media LLC

Subject

Pulmonary and Respiratory Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3