Identification of biomarkers and pathways for the SARS-CoV-2 infections in obstructive sleep apnea patients based on machine learning and proteomic analysis

Author:

Luo Hong,Yan Jisong,Gong Rui,Zhang Dingyu,Zhou Xia,Wang Xianguang

Abstract

Abstract Background The prevalence of obstructive sleep apnea (OSA) was found to be higher in individuals following COVID-19 infection. However, the intricate mechanisms that underscore this concomitance remain partially elucidated. The aim of this study was to delve deeper into the molecular mechanisms that underpin this comorbidity. Methods We acquired gene expression profiles for COVID-19 (GSE157103) and OSA (GSE75097) from the Gene Expression Omnibus (GEO) database. Upon identifying shared feature genes between OSA and COVID-19 utilizing LASSO, Random forest and Support vector machines algorithms, we advanced to functional annotation, analysis of protein–protein interaction networks, module construction, and identification of pivotal genes. Furthermore, we established regulatory networks encompassing transcription factor (TF)-gene and TF-miRNA interactions, and searched for promising drug targets. Subsequently, the expression levels of pivotal genes were validated through proteomics data from COVID-19 cases. Results Fourteen feature genes shared between OSA and COVID-19 were selected for further investigation. Through functional annotation, it was indicated that metabolic pathways play a role in the pathogenesis of both disorders. Subsequently, employing the cytoHubba plugin, ten hub genes were recognized, namely TP53, CCND1, MDM2, RB1, HIF1A, EP300, STAT3, CDK2, HSP90AA1, and PPARG. The finding of proteomics unveiled a substantial augmentation in the expression level of HSP90AA1 in COVID-19 patient samples, especially in severe conditions. Conclusions Our investigation illuminate a mutual pathogenic mechanism that underlies both OSA and COVID-19, which may provide novel perspectives for future investigations into the underlying mechanisms.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3