Prediction of risk and clinical outcome of cuproptosis in lung squamous carcinoma

Author:

Zhang Yangyang,Zhou Jia,Li Hong,Liu Yaobang,Li Jinping

Abstract

Abstract Background Lung squamous cell carcinoma (LUSC) is an important subtype of non-small cell lung cancer. Its special clinicopathological features and molecular background determine the limitations of its treatment. A recent study published on Science defined a newly regulatory cell death (RCD) form – cuproptosis. Which manifested as an excessive intracellular copper accumulation, mitochondrial respiration-dependent, protein acylation-mediated cell death. Different from apoptosis, pyroptosis, necroptosis, ferroptosis and other forms of regulatory cell death (RCD). The imbalance of copper homeostasis in vivo will trigger cytotoxicity and further affect the occurrence and progression of tumors. Our study is the first to predict the prognosis and immune landscape of cuproptosis-related genes (CRGs) in LUSC. Methods The RNA-seq profiles and clinical data of LUSC patients were downloaded from TCGA and GEO databases and then combined into a novel cohort. R language packages are used to analyze and process the data, and CRGs related to the prognosis of LUSC were screened according to the differentially expressed genes (DEGs). After analyzed the tumor mutation burden (TMB), copy number variation (CNV) and CRGs interaction network. Based on CRGs and DEGs, cluster analysis was used to classify LUSC patients twice. The selected key genes were used to construct a CRGs prognostic model to further analyze the correlation between LUSC immune cell infiltration and immunity. Through the risk score and clinical factors, a more accurate nomogram was further constructed. Finally, the drug sensitivity of CRGs in LUSC was analyzed. Results Patients with LUSC were divided into different cuproptosis subtypes and gene clusters, showing different levels of immune infiltration. The risk score showed that the high-risk group had higher tumor microenvironment score, lower tumor mutation load frequency and worse prognosis than the low-risk group. In addition, the high-risk group was more sensitive to vinorelbine, cisplatin, paclitaxel, doxorubicin, etoposide and other drugs. Conclusions Through bioinformatics analysis, we successfully constructed a prognostic risk assessment model based on CRGs, which can not only accurately predict the prognosis of LUSC patients, but also evaluate the patient 's immune infiltration status and sensitivity to chemotherapy drugs. This model shows satisfactory predictive results and provides a reference for subsequent tumor immunotherapy.

Funder

Key Research and Development Program of Ningxia Hui Autonomous Region

Publisher

Springer Science and Business Media LLC

Subject

Pulmonary and Respiratory Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3