Quantitative lung morphology: semi-automated measurement of mean linear intercept

Author:

Crowley George,Kwon Sophia,Caraher Erin J.,Haider Syed Hissam,Lam Rachel,Batra Prag,Melles Daniel,Liu Mengling,Nolan AnnaORCID

Abstract

Abstract Background Quantifying morphologic changes is critical to our understanding of the pathophysiology of the lung. Mean linear intercept (MLI) measures are important in the assessment of clinically relevant pathology, such as emphysema. However, qualitative measures are prone to error and bias, while quantitative methods such as mean linear intercept (MLI) are manually time consuming. Furthermore, a fully automated, reliable method of assessment is nontrivial and resource-intensive. Methods We propose a semi-automated method to quantify MLI that does not require specialized computer knowledge and uses a free, open-source image-processor (Fiji). We tested the method with a computer-generated, idealized dataset, derived an MLI usage guide, and successfully applied this method to a murine model of particulate matter (PM) exposure. Fields of randomly placed, uniform-radius circles were analyzed. Optimal numbers of chords to assess based on MLI were found via receiver-operator-characteristic (ROC)-area under the curve (AUC) analysis. Intraclass correlation coefficient (ICC) measured reliability. Results We demonstrate high accuracy (AUCROC > 0.8 for MLIactual > 63.83 pixels) and excellent reliability (ICC = 0.9998, p < 0.0001). We provide a guide to optimize the number of chords to sample based on MLI. Processing time was 0.03 s/image. We showed elevated MLI in PM-exposed mice compared to PBS-exposed controls. We have also provided the macros that were used and have made an ImageJ plugin available free for academic research use at https://med.nyu.edu/nolanlab. Conclusions Our semi-automated method is reliable, equally fast as fully automated methods, and uses free, open-source software. Additionally, we quantified the optimal number of chords that should be measured per lung field.

Funder

National Heart, Lung, and Blood Institute

CDC/NIOSH

Publisher

Springer Science and Business Media LLC

Subject

Pulmonary and Respiratory Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3