Effects of three spontaneous ventilation modes on respiratory drive and muscle effort in COVID-19 pneumonia patients

Author:

Simón José Manuel Serrano,Montosa Carolina Joya,Carmona Juan Francisco Martínez,Amaya Manuel Jesús Delgado,Castro Javier Luna,Carmona Ashlen Rodríguez,Pérez José Castaño,Delgado Marina Rodríguez,Centeno Guillermo Besso,Lozano José Antonio Benítez

Abstract

Abstract Background High drive and high effort during spontaneous breathing can generate patient self-inflicted lung injury (P-SILI) due to uncontrolled high transpulmonary and transvascular pressures, with deterioration of respiratory failure. P-SILI has been demonstrated in experimental studies and supported in recent computational models. Different treatment strategies have been proposed according to the phenotype of elastance of the respiratory system (Ers) for patients with COVID-19. This study aimed to investigate the effect of three spontaneous ventilation modes on respiratory drive and muscle effort in clinical practice and their relationship with different phenotypes. This was achieved by obtaining the following respiratory signals: airway pressure (Paw), flow (V´) and volume (V) and calculating muscle pressure (Pmus). Methods A physiologic observational study of a series of cases in a university medical-surgical ICU involving 11 mechanically ventilated patients with COVID-19 pneumonia at the initiation of spontaneous breathing was conducted. Three spontaneous ventilation modes were evaluated in each of the patients: pressure support ventilation (PSV), airway pressure release ventilation (APRV), and BiLevel positive airway pressure ventilation (BIPAP). Pmus was calculated through the equation of motion. For this purpose, we acquired the signals of Paw, V´ and V directly from the data transmission protocol of the ventilator (Dräger). The main physiological measurements were calculation of the respiratory drive (P0.1), muscle effort through the ΔPmus, pressure‒time product (PTP/min) and work of breathing of the patient in joules multiplied by respiratory frequency (WOBp, J/min). Results Ten mechanically ventilated patients with COVID-19 pneumonia at the initiation of spontaneous breathing were evaluated. Our results showed similar high drive and muscle effort in each of the spontaneous ventilatory modes tested, without significant differences between them: median (IQR): P0.1 6.28 (4.92–7.44) cm H2O, ∆Pmus 13.48 (11.09–17.81) cm H2O, PTP 166.29 (124.02–253.33) cm H2O*sec/min, and WOBp 12.76 (7.46–18.04) J/min. High drive and effort were found in patients even with low Ers. There was a significant relationship between respiratory drive and WOBp and Ers, though the coefficient of variation widely varied. Conclusions In our study, none of the spontaneous ventilatory methods tested succeeded in reducing high respiratory drive or muscle effort, regardless of the Ers, with subsequent risk of P-SILI.

Publisher

Springer Science and Business Media LLC

Subject

Pulmonary and Respiratory Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3