Abstract
Abstract
Background
Skeletal muscle function dysfunction has been reported in patients with cystic fibrosis (CF). Studies so far showed inconclusive data whether reduced exercise capacity is related to intrinsic muscle dysfunction in CF.
Methods
Twenty patients with CF and 23 age-matched controls completed an incremental cardiopulmonary cycling test. Further, a Wingate anaerobic test to assess muscle power was performed. In addition, all participants completed an incremental knee-extension test with 31P magnetic resonance spectroscopy to assess muscle metabolism (inorganic phosphate (Pi) and phosphocreatinine (PCr) as well as intracellular pH). In the MRI, muscle cross-sectional area of the M. quadriceps (qCSA) was also measured. A subgroup of 15 participants (5 CF, 10 control) additionally completed a continuous high-intensity, high-frequency knee-extension exercise task during 31P magnetic resonance spectroscopy to assess muscle metabolism.
Results
Patients with CF showed a reduced exercise capacity in the incremental cardiopulmonary cycling test (VO2peak: CF 77.8 ± 16.2%predicted (36.5 ± 7.4 ml/qCSA/min), control 100.6 ± 18.8%predicted (49.1 ± 11.4 ml/qCSA/min); p < 0.001), and deficits in anaerobic capacity reflected by the Wingate test (peak power: CF 537 ± 180 W, control 727 ± 186 W; mean power: CF 378 ± 127 W, control 486 ± 126 W; power drop CF 12 ± 5 W, control 8 ± 4 W. all: p < 0.001). In the knee-extension task, patients with CF achieved a significantly lower workload (p < 0.05). However, in a linear model analysing maximal work load of the incremental knee-extension task and results of the Wingate test, respectively, only muscle size and height, but not disease status (CF or not) contributed to explaining variance. In line with this finding, no differences were found in muscle metabolism reflected by intracellular pH and the ratio of Pi/PCr at submaximal stages and peak exercise measured through MRI spectroscopy.
Conclusions
The lower absolute muscle power in patients with CF compared to controls is exclusively explained by the reduced muscle size in this study. No evidence was found for an intrinsic skeletal muscle dysfunction due to primary alterations of muscle metabolism.
Funder
Deutsche Forschungsgemeinschaft
Mukoviszidose e.V.
Publisher
Springer Science and Business Media LLC
Subject
Pulmonary and Respiratory Medicine
Reference45 articles.
1. Moran A, Brunzell C, Cohen RC, Katz M, Marshall BC, Onady G, Robinson KA, Sabadosa KA, Stecenko A, Slovis B, et al. Clinical care guidelines for cystic fibrosis-related diabetes: a position statement of the American Diabetes Association and a clinical practice guideline of the Cystic Fibrosis Foundation, endorsed by the pediatric Endocrine Society. Diabetes Care. 2010;33(12):2697–708.
2. de Meer K, Gulmans V, van der Laag J. Peripheral muscle weakness and exercise capacity in children with cystic fibrosis. Am J Respir Crit Care Med. 1999;159:748–54.
3. Freeman W, Stableforth DE, Cayton RM, Morgan MD. Endurance exercise capacity in adults with cystic fibrosis. Respir Med. 1993;87(7):541–9.
4. Lands LC, Heigenhauser GJ, Jones NL. Analysis of factors limiting maximal exercise performance in cystic fibrosis. Clin Sci. 1992;83(4):391–7.
5. Boas SR, Joswiak ML, Nixon PA, Fulton JA, Orenstein DM. Factors limiting anaerobic performance in adolescent males with cystic fibrosis. Med Sci Sports Exerc. 1996;28(3):291–8.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献