Extracellular vesicles from serum samples of mycobacteria patients induced cell death of THP-1 monocyte and PBMC

Author:

Javadi Alireza,Shamaei Masoud,Tabarsi Payam,Nomani Masoumeh,Varahram Mohammad,Kazemi Bahram

Abstract

AbstractBackgroundExtracellular vesicles (EVs) play a key role in cell communication and the pathogenesis of some diseases. EVs may accelerate cell death during the course of mycobacterial infection and are also considered as a new vaccine design, drug delivery, and biomarker candidates. The current study evaluates the effects of EVs from serum samples of mycobacteria-infected patients on THP-1 monocytes and PBMC cells.MethodEVs were purified from the serum, then cultured separately with THP-1 monocytes and PBMCs. The cell death was determined through annexin V-FITC and PI staining. GW4869, an EVs inhibitor, was used to determine if EVs released from serum could increase THP-1 monocytes cell death.ResultsThe cell death was significantly increased in the presence of 10 µg/ml and 5 µg/ml concentrations of the purified EVs (p < 0.05). Minimal cell death was determined in 2.5 µg/ml and 1.2 µg/ml (p < 0.05). Up to 85% of the cells were viable in the presence of the GW4869 inhibitor (p < 0.05).ConclusionDirect infection of the cells with EVs released from mycobacteria-infected patients samples, the multiplicity of infection with the EVs, and virulent or avirulent mycobacteria may change the status of the cell death. The isolated EVs  from serum samples of patients with mycobacterial  infection accelerated cell death, which means that they might   not be considered as an optimal tool for developing drug delivery and vaccine against tuberculosis.

Publisher

Springer Science and Business Media LLC

Subject

Pulmonary and Respiratory Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. miR-29 as diagnostic biomarkers for tuberculosis: a systematic review and meta-analysis;Frontiers in Public Health;2024-05-14

2. Extracellular Vesicles and Their Role in Lung Infections;International Journal of Molecular Sciences;2023-11-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3