What evidence exists on the impact of anthropogenic radiofrequency electromagnetic fields on animals and plants in the environment? A systematic map protocol

Author:

Karipidis KenORCID,Brzozek Chris,Bhatt Chhavi Raj,Loughran Sarah,Wood Andrew

Abstract

Abstract Background Exposure to radiofrequency (RF) electromagnetic fields (EMF), particularly from telecommunications sources, is one of the most common and fastest growing anthropogenic factors on the environment. In many countries, humans are protected from excessive RF EMF exposure by safety standards that are based on guidelines by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). The ICNIRP guidelines are based on knowledge of how RF EMF affects the human body, however, there are currently no recognised international guidelines to specifically protect animals and plants. Whether the ICNIRP guidelines for humans is adequate to provide protection to the environment is a subject of active debate. This systematic map will collate all the available evidence on whether anthropogenic RF EMF has a negative effect on plants and animals in the environment. The map will also identify gaps in knowledge, recommend future research and inform environmental and radiation protection authorities. Methods The proposed systematic map will include peer-reviewed and grey literature published in English. The EMF—Portal, PubMed and Web of Science databases will be searched using a search string prepared by the review team and tested for comprehensiveness against a list of known relevant reviews. Once duplicates are removed, retrieved articles will be screened in three stages: title, abstract, and full text. Studies will be selected with a subject population of all plants and animals, with exposures to anthropogenic RF EMF (frequency range 100 kHz–300 GHz) compared to no or lower-level exposure, and for all outcomes related to the studied populations. Kappa statistic tests will be conducted at each stage to ensure consistency of decision-making regarding the predefined inclusion/exclusion criteria. Eligible studies will then proceed to the data extraction phase, which will extract meta-data such as bibliographic information, taxonomic information, RF EMF exposure data, outcome(s), sample size, etc. The extracted data will then be organised into a systematic map and the findings summarised by cross-tabulating key meta-data variables in heat maps, charts or other data visualization methods. The systematic map will identify gaps in knowledge, priorities for future research and potential subtopics for further analysis and/or systematic review.

Funder

Australian Government Electromagnetic Energy Program

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Pollution,Ecology

Reference35 articles.

1. Verbeek J, Oftedal G, Feychting M, van Rongen E, Rosaria Scarfì M, Mann S, et al. Prioritizing health outcomes when assessing the effects of exposure to radiofrequency electromagnetic fields: a survey among experts. Environ Int. 2021;146:106300.

2. Australian Radiation Protection and Nuclear Safety Agency. Radiofrequency radiation 2021. https://www.arpansa.gov.au/understanding-radiation/what-is-radiation/non-ionising-radiation/radiofrequency-radiation. Accessed 6 July 2021.

3. Brodie G, Jacob MV, Farrell P. Microwave and Radio-Frequency Technologies in Agriculture: an introduction for agriculturalists and engineers. Berlin: Walter de Gruyter GmbH & Co KG; 2016.

4. Advisory Group on Non-ionising Radiation. Health Effects from Radiofrequency Electromagnetic Fields. In: Health Protection Agency, editor. 2012. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/333080/RCE-20_Health_Effects_RF_Electromagnetic_fields.pdf. Accessed 3 June 2021.

5. Australian Radiation Protection and Nuclear Safety Agency. 5G: the new generation of the mobile phone network and health 2021. https://www.arpansa.gov.au/news/5g-new-generation-mobile-phone-network-and-health. Accessed 11 Nov 2021.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3